Lid driven cavity flow with two porous square obstacles

Q4 Mathematics
Ioan Papuc
{"title":"Lid driven cavity flow with two porous square obstacles","authors":"Ioan Papuc","doi":"10.24193/mathcluj.2023.2.14","DOIUrl":null,"url":null,"abstract":"The flow of Newtonian incompressible fluid inside a two-dimensional lid-driven cavity with two non-adherent porous square blocks was numerically studied. The non-linear governing equations, Darcy-Forchheimer-Brinkman for the porous medium and Navier-Stokes for the free fluid region, were solved using the finite element method. The streamlines and velocity profile of the fluid inside the cavity, as well as the maximum value of the stream function and the coordinates of the main vortex created, are investigated to determine the effect of the Reynolds number, the different combinations of Darcy number and the different placements of the porous squares, on the behaviour of the fluid flow.","PeriodicalId":39356,"journal":{"name":"Mathematica","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/mathcluj.2023.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The flow of Newtonian incompressible fluid inside a two-dimensional lid-driven cavity with two non-adherent porous square blocks was numerically studied. The non-linear governing equations, Darcy-Forchheimer-Brinkman for the porous medium and Navier-Stokes for the free fluid region, were solved using the finite element method. The streamlines and velocity profile of the fluid inside the cavity, as well as the maximum value of the stream function and the coordinates of the main vortex created, are investigated to determine the effect of the Reynolds number, the different combinations of Darcy number and the different placements of the porous squares, on the behaviour of the fluid flow.
带有两个多孔方形障碍物的盖驱动空腔流
对牛顿不可压缩流体在带有两个非粘附多孔方形块的二维顶盖驱动空腔内的流动进行了数值研究。采用有限元法求解了非线性控制方程:多孔介质的达西-福克海默-布林克曼方程和自由流体区域的纳维-斯托克斯方程。研究了空腔内流体的流线和速度剖面,以及流函数的最大值和形成的主涡流的坐标,以确定雷诺数、达西数的不同组合和多孔方块的不同位置对流体流动行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematica
Mathematica Mathematics-Mathematics (all)
CiteScore
0.30
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信