{"title":"Dynamic propagation velocity of positive streamer in a 3 m air gap under lightning impulse voltage","authors":"Zhiwei Li, Ting Lei, Yu Su, Xiuyuan Yao, Bingxue Yang, Delong Liu, Fangcheng Lv, Yujian Ding","doi":"10.1088/2058-6272/ad0d51","DOIUrl":null,"url":null,"abstract":"Streamer is an important stage in the initiation of gap discharge. In this work, we used an 8-frame intensified charge coupled device (ICCD) camera to capture the streamer development process when the lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod-plate gap, and the streamer velocity was analyzed. By analyzing the observations, the streamer velocity is defined as three stages: rapid velocity decline (stage 1), rapid velocity rise (stage 2) and slow velocity decline (stage 3). The effects of electrode shape, applied voltage, gap breakdown or withstand on streamer velocity were analyzed. The electrode with a larger curvature radius will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with the previous results and the statistical characteristics of the primary streamer discharge were discussed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1088/2058-6272/ad0d51","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Streamer is an important stage in the initiation of gap discharge. In this work, we used an 8-frame intensified charge coupled device (ICCD) camera to capture the streamer development process when the lightning impulse voltage of 95%–100% U50% was applied in a 3 m rod-plate gap, and the streamer velocity was analyzed. By analyzing the observations, the streamer velocity is defined as three stages: rapid velocity decline (stage 1), rapid velocity rise (stage 2) and slow velocity decline (stage 3). The effects of electrode shape, applied voltage, gap breakdown or withstand on streamer velocity were analyzed. The electrode with a larger curvature radius will result in a higher initial velocity, and a higher voltage amplitude will cause the streamer to propagate faster at stage 3. Gap withstanding or breakdown has no obvious effect on streamer velocity. In addition, the experimental results are compared with the previous results and the statistical characteristics of the primary streamer discharge were discussed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.