Efficient Privacy-Preserving Federated Deep Learning for Network Intrusion of Industrial IoT

Ningxin He, Zehui Zhang, Xiaotian Wang, Tiegang Gao
{"title":"Efficient Privacy-Preserving Federated Deep Learning for Network Intrusion of Industrial IoT","authors":"Ningxin He, Zehui Zhang, Xiaotian Wang, Tiegang Gao","doi":"10.1155/2023/2956990","DOIUrl":null,"url":null,"abstract":"Intrusion detection systems play a very important role in industrial Internet network security. However, in the large-scale, complex, and heterogeneous industrial Internet of Things (IoT), it is becoming more and more difficult to defend network intrusion threats due to the insufficiency of high-quality attack samples. To solve the problem, an efficient federated network intrusion method called EFedID is proposed for industrial IoT, which can allow different industrial agents to collaboratively train a comprehensive detection model. Specifically, the adaptive gradient sparsification method is introduced to alleviate the communication and computation overheads. To protect the data privacy of the agents, a CKKS cryptosystem-based secure communication protocol is designed to encrypt the model parameters through the federated training process. Our proposed system demonstrates exceptional detection performance on the NSL-KDD, KDD CUP 99, and CICIDS 2017 datasets. Notably, on the NSL-KDD dataset, the model compression rate reaches 9 times while the model accuracy reaches 84.31%. On the KDD CUP 99 dataset, the model compression rate reaches 8.9 times while the model accuracy reaches 97.3%. Lastly, on the CICIDS 2017 dataset, the model compression rate reached 6.173 times while the model accuracy reached 95.51%. The experimental results demonstrate that the proposed method is very suitable for effectively developing a high-accuracy detection model while protecting the data information of industrial agents. Furthermore, the method can be extended to other recent deep learning networks for intrusion detection.","PeriodicalId":507857,"journal":{"name":"International Journal of Intelligent Systems","volume":"148 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/2956990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Intrusion detection systems play a very important role in industrial Internet network security. However, in the large-scale, complex, and heterogeneous industrial Internet of Things (IoT), it is becoming more and more difficult to defend network intrusion threats due to the insufficiency of high-quality attack samples. To solve the problem, an efficient federated network intrusion method called EFedID is proposed for industrial IoT, which can allow different industrial agents to collaboratively train a comprehensive detection model. Specifically, the adaptive gradient sparsification method is introduced to alleviate the communication and computation overheads. To protect the data privacy of the agents, a CKKS cryptosystem-based secure communication protocol is designed to encrypt the model parameters through the federated training process. Our proposed system demonstrates exceptional detection performance on the NSL-KDD, KDD CUP 99, and CICIDS 2017 datasets. Notably, on the NSL-KDD dataset, the model compression rate reaches 9 times while the model accuracy reaches 84.31%. On the KDD CUP 99 dataset, the model compression rate reaches 8.9 times while the model accuracy reaches 97.3%. Lastly, on the CICIDS 2017 dataset, the model compression rate reached 6.173 times while the model accuracy reached 95.51%. The experimental results demonstrate that the proposed method is very suitable for effectively developing a high-accuracy detection model while protecting the data information of industrial agents. Furthermore, the method can be extended to other recent deep learning networks for intrusion detection.
针对工业物联网网络入侵的高效隐私保护联合深度学习
入侵检测系统在工业互联网网络安全中扮演着非常重要的角色。然而,在大规模、复杂、异构的工业物联网(IoT)中,由于高质量的攻击样本不足,防御网络入侵威胁变得越来越困难。为解决这一问题,本文提出了一种针对工业物联网的高效联合网络入侵方法 EFedID,它可以让不同的工业代理协同训练一个全面的检测模型。具体来说,该方法引入了自适应梯度稀疏化方法,以减轻通信和计算开销。为了保护代理的数据隐私,我们设计了基于 CKKS 密码系统的安全通信协议,通过联合训练过程对模型参数进行加密。我们提出的系统在 NSL-KDD、KDD CUP 99 和 CICIDS 2017 数据集上展示了卓越的检测性能。值得注意的是,在 NSL-KDD 数据集上,模型压缩率达到 9 倍,模型准确率达到 84.31%。在 KDD CUP 99 数据集上,模型压缩率达到 8.9 倍,模型准确率达到 97.3%。最后,在 CICIDS 2017 数据集上,模型压缩率达到 6.173 倍,模型准确率达到 95.51%。实验结果表明,所提出的方法非常适合在保护工业代理数据信息的同时,有效地开发出高精度的检测模型。此外,该方法还可以扩展到其他最新的入侵检测深度学习网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信