{"title":"A lightweight method of pose estimation for indoor object","authors":"Sijie Wang, Yifei Li, Diansheng Chen, Jiting Li, Xiaochuan Zhang","doi":"10.3233/ida-230278","DOIUrl":null,"url":null,"abstract":"Due to the multiple types of objects and the uncertainty of their geometric structures and scales in indoor scenes, the position and pose estimation of point clouds of indoor objects by mobile robots has the problems of domain gap, high learning cost, and high computing cost. In this paper, a lightweight 6D pose estimation method is proposed, which decomposes the pose estimation into a viewpoint and the in-plane rotation around the optical axis of the viewpoint, and the improved PointNet++ network structure and two lightweight modules are used to construct a codebook, and the 6d pose estimation of the point cloud of the indoor objects is completed by building and querying the codebook. The model was trained on the ShapeNetV2 dataset, and reports the ADD-S metric validation on the YCB-Video and LineMOD datasets, reaching 97.0% and 94.6% respectively. The experiment shows that the model can be trained to estimate the 6d position and pose of the unknown object point cloud with lower computation and storage cost, and the model with fewer parameters and better real-time performance is superior to other high-recision methods.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"10 3","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-230278","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the multiple types of objects and the uncertainty of their geometric structures and scales in indoor scenes, the position and pose estimation of point clouds of indoor objects by mobile robots has the problems of domain gap, high learning cost, and high computing cost. In this paper, a lightweight 6D pose estimation method is proposed, which decomposes the pose estimation into a viewpoint and the in-plane rotation around the optical axis of the viewpoint, and the improved PointNet++ network structure and two lightweight modules are used to construct a codebook, and the 6d pose estimation of the point cloud of the indoor objects is completed by building and querying the codebook. The model was trained on the ShapeNetV2 dataset, and reports the ADD-S metric validation on the YCB-Video and LineMOD datasets, reaching 97.0% and 94.6% respectively. The experiment shows that the model can be trained to estimate the 6d position and pose of the unknown object point cloud with lower computation and storage cost, and the model with fewer parameters and better real-time performance is superior to other high-recision methods.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.