{"title":"Investigation of electrical, electromagnetic interference shielding and tensile properties of 3D-printed acrylonitrile butadiene styrene/carbon nanotube composites","authors":"Amir Hossein Maleki, Abbas Zolfaghari","doi":"10.1177/08927057231216736","DOIUrl":null,"url":null,"abstract":"Conductive polymer composites (CPCs) are manufactured by compounding conductive particles with a polymer matrix. There are many applications where they are used, including light-weight applications requiring both electrical and heat conductivity. Carbon nanotubes (CNTs) have been accepted as common materials to accomplish this goal. As part of this research, a material extrusion additive manufacturing (AM) process was utilized to create nanocomposites by a 3D-printing technique. Multi-wall carbon nanotubes (MWCNTs) were mixed in 1, 3 and 6 wt fractions with acrylonitrile butadiene styrene (ABS) and extruded in filament form. Three-dimensionally printed specimens were used to evaluate electrical, electromagnetic interference shielding effectiveness (EMI SE) and tensile properties. The electrical conductivity of the material was 26 times greater than that of ABS. In the X-band of electromagnetic waves, EMI SE's reflected and absorbed portions increased respectively 4 and 16 times. The tensile strength and modulus were enhanced by 15% and 9%, respectively. On composite specimens, microwave heat treatment was applied. There is less void space between the rasters and layers, which helps improve tensile properties. Additionally, 3D-printed specimens were tested for melt flow rate (MFR) and dynamic mechanical behaviour. The nozzle has experienced some wear due to the intrinsic abrasive nature of CNTs.","PeriodicalId":508178,"journal":{"name":"Journal of Thermoplastic Composite Materials","volume":"9 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermoplastic Composite Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/08927057231216736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Conductive polymer composites (CPCs) are manufactured by compounding conductive particles with a polymer matrix. There are many applications where they are used, including light-weight applications requiring both electrical and heat conductivity. Carbon nanotubes (CNTs) have been accepted as common materials to accomplish this goal. As part of this research, a material extrusion additive manufacturing (AM) process was utilized to create nanocomposites by a 3D-printing technique. Multi-wall carbon nanotubes (MWCNTs) were mixed in 1, 3 and 6 wt fractions with acrylonitrile butadiene styrene (ABS) and extruded in filament form. Three-dimensionally printed specimens were used to evaluate electrical, electromagnetic interference shielding effectiveness (EMI SE) and tensile properties. The electrical conductivity of the material was 26 times greater than that of ABS. In the X-band of electromagnetic waves, EMI SE's reflected and absorbed portions increased respectively 4 and 16 times. The tensile strength and modulus were enhanced by 15% and 9%, respectively. On composite specimens, microwave heat treatment was applied. There is less void space between the rasters and layers, which helps improve tensile properties. Additionally, 3D-printed specimens were tested for melt flow rate (MFR) and dynamic mechanical behaviour. The nozzle has experienced some wear due to the intrinsic abrasive nature of CNTs.