Intercomparison of Six National Empirical Models for PM2.5 Air Pollution in the Contiguous US

Findings Pub Date : 2023-11-16 DOI:10.32866/001c.89423
M. Bechle, M. Bell, Daniel L. Goldberg, S. Hankey, Tianjun Lu, A. Presto, Allen L. Robinson, Joel Schwartz, Liuhua Shi, Yang Zhang, Julian D. Marshall
{"title":"Intercomparison of Six National Empirical Models for PM2.5 Air Pollution in the Contiguous US","authors":"M. Bechle, M. Bell, Daniel L. Goldberg, S. Hankey, Tianjun Lu, A. Presto, Allen L. Robinson, Joel Schwartz, Liuhua Shi, Yang Zhang, Julian D. Marshall","doi":"10.32866/001c.89423","DOIUrl":null,"url":null,"abstract":"Empirical models aim to predict spatial variability in concentrations of outdoor air pollution. For year-2010 concentrations of PM2.5 in the US, we intercompared six national-scale empirical models, each generated by a different research group. Despite differences in methods and independent variables for the models, we find a relatively high degree of agreement among model predictions (e.g., correlations of 0.84 to 0.92, RMSD (root-mean-square-difference; units: μg/m3) of 0.8 to 1.4, or on average ~12% of the average concentration; many best-fit lines are near the 1:1 line).","PeriodicalId":508951,"journal":{"name":"Findings","volume":"70 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32866/001c.89423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Empirical models aim to predict spatial variability in concentrations of outdoor air pollution. For year-2010 concentrations of PM2.5 in the US, we intercompared six national-scale empirical models, each generated by a different research group. Despite differences in methods and independent variables for the models, we find a relatively high degree of agreement among model predictions (e.g., correlations of 0.84 to 0.92, RMSD (root-mean-square-difference; units: μg/m3) of 0.8 to 1.4, or on average ~12% of the average concentration; many best-fit lines are near the 1:1 line).
美国毗连地区 PM2.5 空气污染六种国家经验模型的相互比较
经验模型旨在预测室外空气污染浓度的空间变化。针对美国 2010 年 PM2.5 的浓度,我们比较了六个全国范围的经验模型,每个模型由不同的研究小组生成。尽管模型的方法和自变量不同,但我们发现模型预测之间的一致性相对较高(例如,相关性为 0.84 至 0.92,RMSD(均方根差;单位:μg/m3)为 0.8 至 1.4,或平均浓度的约 12%;许多最佳拟合线接近 1:1 线)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信