{"title":"Search on an NK Landscape with Swarm Intelligence: Limitations and Future Research Opportunities","authors":"Ren-Raw Chen, Cameron D. Miller, P. Toh","doi":"10.3390/a16110527","DOIUrl":null,"url":null,"abstract":"Swarm intelligence has promising applications for firm search and decision-choice problems and is particularly well suited for examining how other firms influence the focal firm’s search. To evaluate search performance, researchers examining firm search through simulation models typically build a performance landscape. The NK model is the leading tool used for this purpose in the management science literature. We assess the usefulness of the NK landscape for simulated swarm search. We find that the strength of the swarm model for examining firm search and decision-choice problems—the ability to model the influence of other firms on the focal firm—is limited to the NK landscape. Researchers will need alternative ways to create a performance landscape in order to use our full swarm model in simulations. We also identify multiple opportunities—endogenous landscapes, agent-specific landscapes, incomplete information, and costly movements—that future researchers can include in landscape development to gain the maximum insights from swarm-based firm search simulations.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"37 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16110527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Swarm intelligence has promising applications for firm search and decision-choice problems and is particularly well suited for examining how other firms influence the focal firm’s search. To evaluate search performance, researchers examining firm search through simulation models typically build a performance landscape. The NK model is the leading tool used for this purpose in the management science literature. We assess the usefulness of the NK landscape for simulated swarm search. We find that the strength of the swarm model for examining firm search and decision-choice problems—the ability to model the influence of other firms on the focal firm—is limited to the NK landscape. Researchers will need alternative ways to create a performance landscape in order to use our full swarm model in simulations. We also identify multiple opportunities—endogenous landscapes, agent-specific landscapes, incomplete information, and costly movements—that future researchers can include in landscape development to gain the maximum insights from swarm-based firm search simulations.
蜂群智能在企业搜索和决策选择问题上有着广阔的应用前景,尤其适用于研究其他企业如何影响焦点企业的搜索。为了评估搜索绩效,研究人员通常会通过仿真模型建立一个绩效景观来研究企业搜索。NK 模型是管理科学文献中用于此目的的主要工具。我们评估了 NK 景观对模拟蜂群搜索的实用性。我们发现,蜂群模型在研究公司搜索和决策选择问题方面的优势--模拟其他公司对焦点公司影响的能力--仅限于 NK 景观。研究人员需要采用其他方法来创建绩效格局,以便在模拟中使用我们的完整蜂群模型。我们还发现了多种机会--内生景观、代理特定景观、不完全信息和代价高昂的移动--未来的研究人员可以将这些机会纳入景观开发中,以便从基于蜂群的企业搜索模拟中获得最大的洞察力。