{"title":"Improving 3D Synthetic Jet Modeling in a Crossflow","authors":"Howard Ho, E. Essel, Pierre E. Sullivan","doi":"10.1115/1.4064185","DOIUrl":null,"url":null,"abstract":"Three different circular synthetic jet modeling inlet conditions are studied for a turbulent crossflow. The study examines the differences when modeling the whole SJA, neck-only or jet-slot-only under constant actuation frequency (f = 300 Hz) and crossflow blowing ratio (CB = 0.67). Phase-averaged and time-averaged results reveal that both whole SJA and neck-only methods generated nearly identical flow fields. For the neck-only case, a notable reduction in computational cost is achieved through the implementation of an analytical jet profile. The jet-slot-only method, on the other hand, introduces reversed flow during the ingestion cycle, leading to the injection of false-momentum into the crossflow. However, the false-momentum primarily affects the flow immediately downstream of the jet exit, with the boundary layer profile recovering rapidly. A parametric study highlights the importance of maintaining a volume ratio less than 1 of ingested to modeled neck volume to prevent the creation of false-momentum.","PeriodicalId":504378,"journal":{"name":"Journal of Fluids Engineering","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluids Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Three different circular synthetic jet modeling inlet conditions are studied for a turbulent crossflow. The study examines the differences when modeling the whole SJA, neck-only or jet-slot-only under constant actuation frequency (f = 300 Hz) and crossflow blowing ratio (CB = 0.67). Phase-averaged and time-averaged results reveal that both whole SJA and neck-only methods generated nearly identical flow fields. For the neck-only case, a notable reduction in computational cost is achieved through the implementation of an analytical jet profile. The jet-slot-only method, on the other hand, introduces reversed flow during the ingestion cycle, leading to the injection of false-momentum into the crossflow. However, the false-momentum primarily affects the flow immediately downstream of the jet exit, with the boundary layer profile recovering rapidly. A parametric study highlights the importance of maintaining a volume ratio less than 1 of ingested to modeled neck volume to prevent the creation of false-momentum.