Classification of Ideals in Banach Spaces

Wanjala Patrick Makila, O. M. Onyango, S. A. Nyongesa
{"title":"Classification of Ideals in Banach Spaces","authors":"Wanjala Patrick Makila, O. M. Onyango, S. A. Nyongesa","doi":"10.9734/arjom/2023/v19i11760","DOIUrl":null,"url":null,"abstract":"Let an operator T belong to an operator ideal J, then for any operators A and B which can be composed with T asBTA then BTA \\(\\in\\) J. Indeed, J contains the class of finite rank Banach Space operators. Now given L(X; Y ). Then J(X; Y ) \\(\\subseteq\\) L(X; Y ) such that J(X; Y ) = {T : X \\(\\gets\\) Y : T \\(\\subseteq\\) }. Thus an operator ideal is a subclass J of L containing every identity operator acting on a one-dimensional Banach space such that: S + T \\(\\in\\) J(X; Y ) where S; T \\(\\in\\) J(X; Y ). If W;Z;X; Y \\(\\in\\) K;A \\(\\in\\) L(W;X);B \\(\\in\\) L(Y;Z) then BTA \\(\\in\\) J(W;Z) whenever T \\(\\in\\) J(X; These properties compare very well with the algebraic notion of ideals in Banach Algebras within whose classes lie compact operators, weakly compact operators, finitely strictly regular operators, completely continuous operators, strictly singular operators among others. Thus, the aim of this paper is to characterize the various classes of ideals in Banach spaces. Special attention is given to the characteristics involving the ideal properties, the metric approximation properties, the hereditary properties in relation to the ideal extensions in the Hahn-Banach space, projection and embedments in the biduals of the Banach Space.","PeriodicalId":281529,"journal":{"name":"Asian Research Journal of Mathematics","volume":"37 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Research Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/arjom/2023/v19i11760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let an operator T belong to an operator ideal J, then for any operators A and B which can be composed with T asBTA then BTA \(\in\) J. Indeed, J contains the class of finite rank Banach Space operators. Now given L(X; Y ). Then J(X; Y ) \(\subseteq\) L(X; Y ) such that J(X; Y ) = {T : X \(\gets\) Y : T \(\subseteq\) }. Thus an operator ideal is a subclass J of L containing every identity operator acting on a one-dimensional Banach space such that: S + T \(\in\) J(X; Y ) where S; T \(\in\) J(X; Y ). If W;Z;X; Y \(\in\) K;A \(\in\) L(W;X);B \(\in\) L(Y;Z) then BTA \(\in\) J(W;Z) whenever T \(\in\) J(X; These properties compare very well with the algebraic notion of ideals in Banach Algebras within whose classes lie compact operators, weakly compact operators, finitely strictly regular operators, completely continuous operators, strictly singular operators among others. Thus, the aim of this paper is to characterize the various classes of ideals in Banach spaces. Special attention is given to the characteristics involving the ideal properties, the metric approximation properties, the hereditary properties in relation to the ideal extensions in the Hahn-Banach space, projection and embedments in the biduals of the Banach Space.
巴拿赫空间中的理想分类
让一个算子 T 属于一个算子理想 J,那么对于任何可以与 T 组成 BTA 的算子 A 和 B,则 BTA (\in\)J。现在给定 L(X; Y ).那么 J(X; Y )\(\subseteq\) L(X; Y ) 这样 J(X; Y ) = {T : X \(\gets\) Y : T \(\subseteq\) }。因此,一个算子理想是 L 的子类 J,它包含作用于一维巴拿赫空间的每一个同一算子,使得:S + T \(\in\) J(X; Y ) 其中 S; T \(\in\) J(X; Y ).如果 W;Z;X;Y \(\in\) K;A \(\in\) L(W;X);B \(\in\) L(Y;Z),那么只要 T\(\in\) J(X),BTA \(\in\) J(W;Z);这些性质与巴拿赫代数中理想的代数概念非常相似,在巴拿赫代数的理想类中有紧凑算子、弱紧凑算子、有限严格正则算子、完全连续算子、严格奇异算子等等。因此,本文的目的是描述巴拿赫空间中各类理想的特征。本文特别关注涉及理想特性、度量逼近特性、与哈恩-巴拿赫空间中理想扩展相关的遗传特性、巴拿赫空间双元中的投影和嵌入等特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信