{"title":"High performance of variable-pitch wind system based on a direct matrix converter-fed DFIG using third order sliding mode control","authors":"A. Dendouga, A. Dendouga, N. Essounbouli","doi":"10.1177/0309524x231199435","DOIUrl":null,"url":null,"abstract":"In this paper, a full nonlinear control of a variable-pitch wind system (VPWS) based on the doubly fed induction generator (DFIG) fed by a direct matrix converter (DMC) has been presented. In this context, The MPPT has been implemented using the third order sliding mode control (TOSMC) in order to ensure maximum power provided by the wind turbine on the one side, on the other side the pitch control has been implemented in order to limit the power extracted to its nominal value. Moreover, a TOSMC has been incorporated into the direct flied-oriented control (DFOC) to ensure high-performance control of the active and reactive power of DFIG. To examine the performance of the TOSMC, a comparative study was performed between this last type and the first and second order sliding mode controllers. The obtained results affirmed the high performance provided by the TOSMC compared to lower order sliding mode controllers.","PeriodicalId":51570,"journal":{"name":"Wind Engineering","volume":"11 4","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/0309524x231199435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a full nonlinear control of a variable-pitch wind system (VPWS) based on the doubly fed induction generator (DFIG) fed by a direct matrix converter (DMC) has been presented. In this context, The MPPT has been implemented using the third order sliding mode control (TOSMC) in order to ensure maximum power provided by the wind turbine on the one side, on the other side the pitch control has been implemented in order to limit the power extracted to its nominal value. Moreover, a TOSMC has been incorporated into the direct flied-oriented control (DFOC) to ensure high-performance control of the active and reactive power of DFIG. To examine the performance of the TOSMC, a comparative study was performed between this last type and the first and second order sliding mode controllers. The obtained results affirmed the high performance provided by the TOSMC compared to lower order sliding mode controllers.
期刊介绍:
Having been in continuous publication since 1977, Wind Engineering is the oldest and most authoritative English language journal devoted entirely to the technology of wind energy. Under the direction of a distinguished editor and editorial board, Wind Engineering appears bimonthly with fully refereed contributions from active figures in the field, book notices, and summaries of the more interesting papers from other sources. Papers are published in Wind Engineering on: the aerodynamics of rotors and blades; machine subsystems and components; design; test programmes; power generation and transmission; measuring and recording techniques; installations and applications; and economic, environmental and legal aspects.