ON TOPOLOGY OF CENTROSYMMETRIC MATRICES WITH APPLICATIONS

S. Koyuncu, C. Ozel, M. Albaity
{"title":"ON TOPOLOGY OF CENTROSYMMETRIC MATRICES WITH APPLICATIONS","authors":"S. Koyuncu, C. Ozel, M. Albaity","doi":"10.37418/amsj.12.11.2","DOIUrl":null,"url":null,"abstract":"In this work, we investigate the algebraic and geometric properties of centrosymmetric matrices over the positive reals. We show that the set of centrosymmetric matrices, denoted as $\\mathcal{C}_n$, forms a Lie algebra under the Hadamard product with the Lie bracket defined as $[A, B] = A \\circ B - B \\circ A$. Furthermore, we prove that the set $\\mathcal{C}_n$ of centrosymmetric matrices over $\\mathbb{R}^+$ is an open connected differentiable manifold with dimension $\\lceil \\frac{n^2}{2}\\rceil$. This result is achieved by establishing a diffeomorphism between $\\mathcal{C}_n$ and a Euclidean space $\\mathbb{R}^{\\lceil \\frac{n^2}{2}\\rceil}$, and by demonstrating that the set is both open and path-connected. This work provides insight into the algebraic and topological properties of centrosymmetric matrices, paving the way for potential applications in various mathematical and engineering fields.","PeriodicalId":231117,"journal":{"name":"Advances in Mathematics: Scientific Journal","volume":"128 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Mathematics: Scientific Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37418/amsj.12.11.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we investigate the algebraic and geometric properties of centrosymmetric matrices over the positive reals. We show that the set of centrosymmetric matrices, denoted as $\mathcal{C}_n$, forms a Lie algebra under the Hadamard product with the Lie bracket defined as $[A, B] = A \circ B - B \circ A$. Furthermore, we prove that the set $\mathcal{C}_n$ of centrosymmetric matrices over $\mathbb{R}^+$ is an open connected differentiable manifold with dimension $\lceil \frac{n^2}{2}\rceil$. This result is achieved by establishing a diffeomorphism between $\mathcal{C}_n$ and a Euclidean space $\mathbb{R}^{\lceil \frac{n^2}{2}\rceil}$, and by demonstrating that the set is both open and path-connected. This work provides insight into the algebraic and topological properties of centrosymmetric matrices, paving the way for potential applications in various mathematical and engineering fields.
中心对称矩阵拓扑及其应用
在这项工作中,我们研究了正实数上中心对称矩阵的代数和几何性质。我们证明,中心对称矩阵的集合(表示为 $\mathcal{C}_n$)在哈达玛积下构成一个列代数,其列括号定义为 $[A, B] = A \circ B - B \circ A$。此外,我们还证明了在 $\mathbb{R}^+$ 上的中心对称矩阵集合 $\mathcal{C}_n$ 是维数为 $\lceil \frac{n^2}{2}\rceil$ 的开放连通可微流形。这一结果是通过在 $\mathcal{C}_n$ 与欧几里得空间 $\mathbb{R}^{lceil \frac{n^2}{2}\rceil}$ 之间建立差分同构,并证明该集合既是开放的又是路径连接的而得到的。这项研究深入揭示了中心对称矩阵的代数和拓扑性质,为其在数学和工程领域的潜在应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信