Optimizing Big Data Analytics for Reliability and Resilience: A Survey of Techniques and Applications

El-Houcine El Baqqaly, Alaa Hussein Khaleel
{"title":"Optimizing Big Data Analytics for Reliability and Resilience: A Survey of Techniques and Applications","authors":"El-Houcine El Baqqaly, Alaa Hussein Khaleel","doi":"10.58496/mjbd/2023/016","DOIUrl":null,"url":null,"abstract":"The advent of big data has revolutionized various industries, enabling organizations to make data- driven decisions and gain valuable insights. However, the sheer volume, velocity, and variety of big data pose significant challenges in ensuring the reliability and resilience of big data analytics pipelines. In this context, optimization techniques play a crucial role in enhancing the reliability and resilience of big data analytics. This paper provides a comprehensive survey of optimization techniques for reliable and resilient big data analytics. The paper first discusses the motivation for optimizing big data analytics for reliability and resilience. Then, it presents a detailed overview of various optimization techniques, including resource optimization, data partitioning, data compression, load balancing, and fault detection and tolerance. Finally, the paper discusses the applications of optimization techniques in various big data analytics domains, such as real-time analytics, fraud detection, recommendation systems, predictive analytics, and risk management.","PeriodicalId":325612,"journal":{"name":"Mesopotamian Journal of Big Data","volume":"61 24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mesopotamian Journal of Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.58496/mjbd/2023/016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of big data has revolutionized various industries, enabling organizations to make data- driven decisions and gain valuable insights. However, the sheer volume, velocity, and variety of big data pose significant challenges in ensuring the reliability and resilience of big data analytics pipelines. In this context, optimization techniques play a crucial role in enhancing the reliability and resilience of big data analytics. This paper provides a comprehensive survey of optimization techniques for reliable and resilient big data analytics. The paper first discusses the motivation for optimizing big data analytics for reliability and resilience. Then, it presents a detailed overview of various optimization techniques, including resource optimization, data partitioning, data compression, load balancing, and fault detection and tolerance. Finally, the paper discusses the applications of optimization techniques in various big data analytics domains, such as real-time analytics, fraud detection, recommendation systems, predictive analytics, and risk management.
优化大数据分析,提高可靠性和复原力:技术与应用概览
大数据的出现给各行各业带来了革命性的变化,使企业能够做出数据驱动的决策并获得有价值的见解。然而,海量、高速、多样的大数据给确保大数据分析管道的可靠性和弹性带来了巨大挑战。在这种情况下,优化技术在提高大数据分析的可靠性和弹性方面发挥着至关重要的作用。本文全面考察了用于可靠和弹性大数据分析的优化技术。本文首先讨论了针对可靠性和弹性优化大数据分析的动机。然后,本文详细概述了各种优化技术,包括资源优化、数据分区、数据压缩、负载平衡以及故障检测和容错。最后,本文讨论了优化技术在实时分析、欺诈检测、推荐系统、预测分析和风险管理等各种大数据分析领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信