Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta

A. Prayoga, Maimunah, Pristi Sukmasetya, Muhammad Resa, Arif Yudianto, Rofi Abul Hasani
{"title":"Arsitektur Convolutional Neural Network untuk Model Klasifikasi Citra Batik Yogyakarta","authors":"A. Prayoga, Maimunah, Pristi Sukmasetya, Muhammad Resa, Arif Yudianto, Rofi Abul Hasani","doi":"10.52158/jacost.v4i2.486","DOIUrl":null,"url":null,"abstract":"Batik is an Indonesian culture that has been recognized as a world heritage by UNESCO. Indonesian batik has a variety of different motifs in each region. One area that is famous for its batik motifs is Yogyakarta. Yogyakarta has a variety of batik motifs such as ceplok, kawung, and parang which can be differentiated based on the pattern. Yogyakarta batik motifs need to be preserved so they do not experience extinction, one way is by introducing Yogyakarta batik motifs. The recognition of Yogyakarta batik motifs can utilize technology to classify images of Yogyakarta batik motifs based on patterns using the Convolutional Neural Network (CNN). The Yogyakarta batik motif images used for classification totaled 600 images consisting of 3 different motifs such as ceplok, kawung, and parang. Image classification using CNN depends on the architectural model used. The CNN architecture consists of two stages, namely Convolutional for feature extraction and Neural Network for classification. The CNN architectural models made for the introduction of Yogyakarta batik motifs totaled 7 models which were distinguished at the feature extraction stage. The highest accuracy results in the classification of Yogyakarta batik motif images using CNN were obtained in the 6th model. The 6th model has an accuracy of 87.83%, an average precision of 88.46% and an average recall of 87.66%. The accuracy, precision, and recall values ​​obtained by the 6th model are above 80%, which means that the 6th model can classify Yogyakarta batik motifs quite well.","PeriodicalId":151855,"journal":{"name":"Journal of Applied Computer Science and Technology","volume":"11 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Computer Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52158/jacost.v4i2.486","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Batik is an Indonesian culture that has been recognized as a world heritage by UNESCO. Indonesian batik has a variety of different motifs in each region. One area that is famous for its batik motifs is Yogyakarta. Yogyakarta has a variety of batik motifs such as ceplok, kawung, and parang which can be differentiated based on the pattern. Yogyakarta batik motifs need to be preserved so they do not experience extinction, one way is by introducing Yogyakarta batik motifs. The recognition of Yogyakarta batik motifs can utilize technology to classify images of Yogyakarta batik motifs based on patterns using the Convolutional Neural Network (CNN). The Yogyakarta batik motif images used for classification totaled 600 images consisting of 3 different motifs such as ceplok, kawung, and parang. Image classification using CNN depends on the architectural model used. The CNN architecture consists of two stages, namely Convolutional for feature extraction and Neural Network for classification. The CNN architectural models made for the introduction of Yogyakarta batik motifs totaled 7 models which were distinguished at the feature extraction stage. The highest accuracy results in the classification of Yogyakarta batik motif images using CNN were obtained in the 6th model. The 6th model has an accuracy of 87.83%, an average precision of 88.46% and an average recall of 87.66%. The accuracy, precision, and recall values ​​obtained by the 6th model are above 80%, which means that the 6th model can classify Yogyakarta batik motifs quite well.
用于日惹蜡染图像分类模型的卷积神经网络架构
蜡染是印度尼西亚的一种文化,已被联合国教科文组织认定为世界遗产。印尼蜡染在每个地区都有各种不同的图案。日惹就是以蜡染图案而闻名的地区之一。日惹的蜡染图案多种多样,如 ceplok、kawung 和 parang,可根据图案进行区分。日惹蜡染图案需要得到保护,以免其消亡,方法之一就是引入日惹蜡染图案。识别日惹蜡染图案可以利用卷积神经网络(CNN)技术,根据图案对日惹蜡染图案的图像进行分类。用于分类的日惹蜡染图案图像共有 600 张,包括 3 种不同的图案,如 ceplok、kawung 和 parang。使用 CNN 进行图像分类取决于所使用的架构模型。CNN 架构包括两个阶段,即用于特征提取的卷积和用于分类的神经网络。为引入日惹蜡染图案而制作的 CNN 架构模型共有 7 个,这些模型在特征提取阶段就已区分开来。使用 CNN 对日惹蜡染图案图像进行分类的准确率最高的是第 6 个模型。第 6 个模型的准确率为 87.83%,平均精确率为 88.46%,平均召回率为 87.66%。第 6 个模型获得的准确率、精确率和召回率均高于 80%,这意味着第 6 个模型可以很好地对日惹蜡染图案进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信