Įrodymai be žodžių

Edmundas Mazėtis, Grigorijus Melničenko
{"title":"Įrodymai be žodžių","authors":"Edmundas Mazėtis, Grigorijus Melničenko","doi":"10.15388/lmr.2023.33596","DOIUrl":null,"url":null,"abstract":"Usually, proofs of mathematical statements involve both algebraic rearrangements and logical reasoning. But there are mathematical statements whose truth is obvious at first glance when there is a diagram illustrating that proof. Although the proofs based on the drawing are not necessarily full and complete, but the drawing helps to notice facts that are then easily supported by algebra and logic. The paper presents proofs of mathematical propositions where, upon careful study of the drawing, the main idea of the proof can be seen from the drawing, and the proof itself becomes beautiful and clear.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2023.33596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Usually, proofs of mathematical statements involve both algebraic rearrangements and logical reasoning. But there are mathematical statements whose truth is obvious at first glance when there is a diagram illustrating that proof. Although the proofs based on the drawing are not necessarily full and complete, but the drawing helps to notice facts that are then easily supported by algebra and logic. The paper presents proofs of mathematical propositions where, upon careful study of the drawing, the main idea of the proof can be seen from the drawing, and the proof itself becomes beautiful and clear.
无言的证据
通常,数学语句的证明涉及代数重排和逻辑推理。但有些数学语句,如果有图解说明,其真理性一看便知。虽然基于图示的证明不一定全面和完整,但图示有助于注意到一些事实,而这些事实又很容易得到代数和逻辑的支持。本文介绍的数学命题证明,只要仔细研究图画,就能从图画中看出证明的主旨,证明本身也变得优美而清晰。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信