{"title":"A user-friendly Bees Algorithm for continuous and combinatorial optimisation","authors":"A. H. Ismail, Wegie Ruslan, D. Pham","doi":"10.1080/23311916.2023.2278257","DOIUrl":null,"url":null,"abstract":"Abstract This paper introduces a new variant of the Bees Algorithm (BA) called Bees Algorithm with 2-parameter (BA2), which is a population-based metaheuristic algorithm designed to solve continuous and combinatorial optimisation problems. The proposed algorithm simplified the BA’s parameters by combining exploration and exploitation strategies while preserving the algorithm’s core principles to efficiently search for optimal solutions. The paper provides a detailed description of the algorithm’s core principles and its application to two engineering problems, the air-cooling system design (ACSD) and the printed circuit board assembly sequence optimisation (PASO). The results show that BA2 outperforms previous versions of the basic BA in terms of convergence speed and solution quality. However, the authors acknowledge that further research is needed to test the scalability and generalisability of the algorithm to larger and more diverse optimisation problems. Overall, this paper provides valuable insights into the potential of metaheuristics for solving real-world optimisation problems.","PeriodicalId":10464,"journal":{"name":"Cogent Engineering","volume":"4 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311916.2023.2278257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract This paper introduces a new variant of the Bees Algorithm (BA) called Bees Algorithm with 2-parameter (BA2), which is a population-based metaheuristic algorithm designed to solve continuous and combinatorial optimisation problems. The proposed algorithm simplified the BA’s parameters by combining exploration and exploitation strategies while preserving the algorithm’s core principles to efficiently search for optimal solutions. The paper provides a detailed description of the algorithm’s core principles and its application to two engineering problems, the air-cooling system design (ACSD) and the printed circuit board assembly sequence optimisation (PASO). The results show that BA2 outperforms previous versions of the basic BA in terms of convergence speed and solution quality. However, the authors acknowledge that further research is needed to test the scalability and generalisability of the algorithm to larger and more diverse optimisation problems. Overall, this paper provides valuable insights into the potential of metaheuristics for solving real-world optimisation problems.
期刊介绍:
One of the largest, multidisciplinary open access engineering journals of peer-reviewed research, Cogent Engineering, part of the Taylor & Francis Group, covers all areas of engineering and technology, from chemical engineering to computer science, and mechanical to materials engineering. Cogent Engineering encourages interdisciplinary research and also accepts negative results, software article, replication studies and reviews.