Chemical pretreatment in lignocellulosic biomass, anaerobic digestion, and biomethanation

Erick Auma Omondi, Arnold Aluda Kegode
{"title":"Chemical pretreatment in lignocellulosic biomass, anaerobic digestion, and biomethanation","authors":"Erick Auma Omondi, Arnold Aluda Kegode","doi":"10.18686/cest.v1i2.70","DOIUrl":null,"url":null,"abstract":"The current impacts of climate change necessitate the promotion and use of renewable energy sources to avert the growing environmental and health concerns emanating from fossil fuels. Lignocellulosic biomass (LCB) is a promising, renewable, and sustainable energy source based on its abundance and feedstock properties. Anaerobic digestion (AD) involves a biochemical process that can convert LCB to biogas through hydrolysis and biomethanation processes through the action of microorganisms such as methanogens and sulfate-reducing bacteria. The hydrolysis of LCB releases various reducing sugars, which are essential in the production of biofuels such as bioethanol and biogas, organic acids, phenols, and aldehydes. The resultant biogas can complement energy needs while achieving economic, environmental, and health benefits. Enhancement of the AD process for LCB to bioenergy can be realized through appropriate pretreatment capable of disrupting the complex lignocellulosic structure and freeing cellulose and hemicellulose from the binding lignin for enzymatic saccharification and fermentation. Determining the optimal pretreatment technique for AD is critical for the success of the LCB energy production process. This study evaluated the application of chemical pretreatment to the improvement of LCB digestion for bioenergy production. The study reviews the LCB characteristics, AD processes, and the role of various chemical pretreatment techniques such as acid, alkali, organosolv, ozonolysis, and ionic fluids. The findings of this study create an understanding of the action methods and benefits of different LCB chemical pretreatment techniques while highlighting the outstanding drawbacks that require divergent strategies.","PeriodicalId":504271,"journal":{"name":"Clean Energy Science and Technology","volume":"41 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clean Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18686/cest.v1i2.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current impacts of climate change necessitate the promotion and use of renewable energy sources to avert the growing environmental and health concerns emanating from fossil fuels. Lignocellulosic biomass (LCB) is a promising, renewable, and sustainable energy source based on its abundance and feedstock properties. Anaerobic digestion (AD) involves a biochemical process that can convert LCB to biogas through hydrolysis and biomethanation processes through the action of microorganisms such as methanogens and sulfate-reducing bacteria. The hydrolysis of LCB releases various reducing sugars, which are essential in the production of biofuels such as bioethanol and biogas, organic acids, phenols, and aldehydes. The resultant biogas can complement energy needs while achieving economic, environmental, and health benefits. Enhancement of the AD process for LCB to bioenergy can be realized through appropriate pretreatment capable of disrupting the complex lignocellulosic structure and freeing cellulose and hemicellulose from the binding lignin for enzymatic saccharification and fermentation. Determining the optimal pretreatment technique for AD is critical for the success of the LCB energy production process. This study evaluated the application of chemical pretreatment to the improvement of LCB digestion for bioenergy production. The study reviews the LCB characteristics, AD processes, and the role of various chemical pretreatment techniques such as acid, alkali, organosolv, ozonolysis, and ionic fluids. The findings of this study create an understanding of the action methods and benefits of different LCB chemical pretreatment techniques while highlighting the outstanding drawbacks that require divergent strategies.
木质纤维素生物质的化学预处理、厌氧消化和生物甲烷化
当前气候变化的影响要求推广和使用可再生能源,以避免化石燃料带来的日益严重的环境和健康问题。基于木质纤维素生物质(LCB)的丰富性和原料特性,它是一种前景广阔的可再生可持续能源。厌氧消化(AD)涉及一个生化过程,通过甲烷菌和硫酸盐还原菌等微生物的作用,可将 LCB 通过水解和生物甲烷化过程转化为沼气。低浓度沼气在水解过程中会释放出各种还原糖,这些还原糖对生产生物乙醇和沼气等生物燃料、有机酸、酚类和醛类至关重要。由此产生的沼气可以补充能源需求,同时实现经济、环境和健康效益。通过适当的预处理,破坏复杂的木质纤维素结构,使纤维素和半纤维素脱离木质素的束缚,从而进行酶糖化和发酵,可以提高低浓生物质转化为生物能源的厌氧消化(AD)过程。确定厌氧消化(AD)的最佳预处理技术对于低浓度木质纤维素能源生产过程的成功至关重要。本研究评估了化学预处理在改善枸杞多糖消化以生产生物能源方面的应用。研究回顾了枸杞多糖的特性、AD 工艺以及各种化学预处理技术(如酸、碱、有机溶剂、臭氧溶解和离子液体)的作用。这项研究的结果使人们了解了不同低浓生物质化学预处理技术的作用方法和优点,同时强调了需要采取不同策略的突出缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信