Savanoriškosios imties panaudojimas populiacijos parametrams vertinti

Ieva Burakauskaitė, Andrius Čiginas
{"title":"Savanoriškosios imties panaudojimas populiacijos parametrams vertinti","authors":"Ieva Burakauskaitė, Andrius Čiginas","doi":"10.15388/lmr.2003.33587","DOIUrl":null,"url":null,"abstract":"We aim to find a way to effectively integrate a non-probability (voluntary) sample under the data framework, where the study variable is also observed in a probability sample of some statistical survey. The selection bias that arises from voluntary participation in the survey is corrected by estimating the inclusion into the sample probabilities (propensity scores) for the units in the non-probability sample. The estimators for the propensity scores are constructed using a parametric logistic regression model. We consider two modeling scenarios: with an assumption that the willingness to participate in the voluntary survey does not depend on the survey variable itself and that such a variable does contribute to whether the individual responds or not. The maximum likelihood method is applied in both scenarios to estimate the propensity scores. The estimators of the population mean based on the estimated propensity scores are linearly combined with the unbiased estimator using the probability sample data. We compare the constructed estimators in the simulation study, where we estimate the population proportions using data from the Population and Housing Census surveys.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmr.2003.33587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We aim to find a way to effectively integrate a non-probability (voluntary) sample under the data framework, where the study variable is also observed in a probability sample of some statistical survey. The selection bias that arises from voluntary participation in the survey is corrected by estimating the inclusion into the sample probabilities (propensity scores) for the units in the non-probability sample. The estimators for the propensity scores are constructed using a parametric logistic regression model. We consider two modeling scenarios: with an assumption that the willingness to participate in the voluntary survey does not depend on the survey variable itself and that such a variable does contribute to whether the individual responds or not. The maximum likelihood method is applied in both scenarios to estimate the propensity scores. The estimators of the population mean based on the estimated propensity scores are linearly combined with the unbiased estimator using the probability sample data. We compare the constructed estimators in the simulation study, where we estimate the population proportions using data from the Population and Housing Census surveys.
使用自愿样本估算人口参数
我们的目标是找到一种方法,在数据框架下有效整合非概率(自愿)样本,即在某个统计调查的概率样本中也能观测到研究变量。自愿参与调查所产生的选择偏差可以通过估算非概率样本中的单位纳入样本的概率(倾向分数)来纠正。倾向分数的估计值是通过参数逻辑回归模型构建的。我们考虑了两种建模方案:假设参与自愿调查的意愿并不取决于调查变量本身,以及该变量确实会影响个人是否参与调查。在这两种情况下,均采用最大似然法估算倾向得分。基于估计倾向得分的人群平均值估计值与使用概率样本数据的无偏估计值进行线性组合。在模拟研究中,我们使用人口与住房普查调查数据估算人口比例,并对构建的估算器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信