Performance Analysis of Cross-Assembly of Metatranscriptomic Datasets in Viral Community Studies

Q3 Mathematics
Yu.S. Bukin, A. N. Bondaryuk, T.V. Butina
{"title":"Performance Analysis of Cross-Assembly of Metatranscriptomic Datasets in Viral Community Studies","authors":"Yu.S. Bukin, A. N. Bondaryuk, T.V. Butina","doi":"10.17537/2023.18.418","DOIUrl":null,"url":null,"abstract":"We conducted a comparative analysis of individual and cross-assemblies of several metatranscriptomic data sets to study viral communities using several metatranscriptomes of endemic Baikal mollusks. We have shown that, compared to individual dataset assemblies, a Hidden Markov Model-based cross-assembly procedure increases the number of viral contigs (or scaffolds) per sample, the number of virotypes identified, and the average length of scaffolds per sample. The proportion of assembled viral reads from the total number of reads in samples is higher in cross-assembly. De novo cross-genomic assemblies combined with a virus identification algorithm using Hidden Markov Model present the data in a table with the number of reads from different samples for each scaffold. The table allows comparison of samples based on the representation of all viral scaffolds, including those not taxonomically identified, i.e. those that have no analogues in the NCBI RefSeq database. Thus, cross-genomic assemblies allow for comparative analyzes taking into account the latent diversity of viruses. We propose a pipeline for metatranscriptomic data analysis using de novo cross-genomic assembly to study viral diversity.","PeriodicalId":53525,"journal":{"name":"Mathematical Biology and Bioinformatics","volume":"27 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biology and Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17537/2023.18.418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

We conducted a comparative analysis of individual and cross-assemblies of several metatranscriptomic data sets to study viral communities using several metatranscriptomes of endemic Baikal mollusks. We have shown that, compared to individual dataset assemblies, a Hidden Markov Model-based cross-assembly procedure increases the number of viral contigs (or scaffolds) per sample, the number of virotypes identified, and the average length of scaffolds per sample. The proportion of assembled viral reads from the total number of reads in samples is higher in cross-assembly. De novo cross-genomic assemblies combined with a virus identification algorithm using Hidden Markov Model present the data in a table with the number of reads from different samples for each scaffold. The table allows comparison of samples based on the representation of all viral scaffolds, including those not taxonomically identified, i.e. those that have no analogues in the NCBI RefSeq database. Thus, cross-genomic assemblies allow for comparative analyzes taking into account the latent diversity of viruses. We propose a pipeline for metatranscriptomic data analysis using de novo cross-genomic assembly to study viral diversity.
病毒群落研究中元转录组数据集交叉组装的性能分析
我们对几个元转录组数据集的单独组装和交叉组装进行了比较分析,以便利用贝加尔湖特有软体动物的几个元转录组研究病毒群落。我们的研究表明,与单个数据集组装相比,基于隐马尔可夫模型的交叉组装程序增加了每个样本的病毒等位基因(或支架)数量、确定的病毒类型数量以及每个样本支架的平均长度。在交叉组装过程中,组装的病毒读数占样本读数总数的比例更高。新的交叉基因组组装与使用隐马尔可夫模型的病毒识别算法相结合,将数据以表格的形式呈现出来,其中包含每个支架上来自不同样本的读数数量。通过该表,可以根据所有病毒支架的代表性对样本进行比较,包括那些未在分类学上确定的病毒支架,即那些在 NCBI RefSeq 数据库中没有类似物的病毒支架。因此,跨基因组组装可以在考虑病毒潜在多样性的基础上进行比较分析。我们提出了一种利用从头交叉基因组组装进行元转录组数据分析的方法,以研究病毒的多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Biology and Bioinformatics
Mathematical Biology and Bioinformatics Mathematics-Applied Mathematics
CiteScore
1.10
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信