Diskrečiųjų martingalų statistinių modelių lokalus asimptotinis normalumas

Vaidotas Kanišauskas
{"title":"Diskrečiųjų martingalų statistinių modelių lokalus asimptotinis normalumas","authors":"Vaidotas Kanišauskas","doi":"10.15388/lmd.2023.33592","DOIUrl":null,"url":null,"abstract":"We establish general conditions assuring the local asymptotic normality of statistical experiments of discrete or purely discontinuous local martingales obtained models of point processes of all types were found out. The general conditions include the Fréchet differentiability of parameters in probability in normed spaces with regard to a continuous compensator.","PeriodicalId":33611,"journal":{"name":"Lietuvos Matematikos Rinkinys","volume":"29 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lietuvos Matematikos Rinkinys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15388/lmd.2023.33592","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We establish general conditions assuring the local asymptotic normality of statistical experiments of discrete or purely discontinuous local martingales obtained models of point processes of all types were found out. The general conditions include the Fréchet differentiability of parameters in probability in normed spaces with regard to a continuous compensator.
离散马氏统计模型的局部渐近正态性
我们建立了确保离散或纯不连续局部马氏统计实验的局部渐近正态性的一般条件,这些实验获得了各类点过程的模型。一般条件包括规范空间中关于连续补偿器的概率参数的弗雷谢特可微分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信