An upper bound for a condition number theorem of variational inequalities

Tullio Zolezzi
{"title":"An upper bound for a condition number theorem of variational inequalities","authors":"Tullio Zolezzi","doi":"10.55630/serdica.2023.49.33-48","DOIUrl":null,"url":null,"abstract":"Nonlinear variational inequalities in Banach spaces are considered. A notion of (absolute) condition number with respect to the right-hand side is introduced. A distance among variational inequalities is defined. We prove that the distance to suitably restricted ill-conditioned variational inequalities is bounded from above by a multiple of the reciprocal of the condition number. By using an analogous lower bound of the companion paper [14], we obtain a full condition number theorem for variational inequalities. The particular case of convex optimization problems is also considered. Known results dealing with optimization problems are thereby generalized.","PeriodicalId":509503,"journal":{"name":"Serdica Mathematical Journal","volume":"192 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Serdica Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.55630/serdica.2023.49.33-48","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear variational inequalities in Banach spaces are considered. A notion of (absolute) condition number with respect to the right-hand side is introduced. A distance among variational inequalities is defined. We prove that the distance to suitably restricted ill-conditioned variational inequalities is bounded from above by a multiple of the reciprocal of the condition number. By using an analogous lower bound of the companion paper [14], we obtain a full condition number theorem for variational inequalities. The particular case of convex optimization problems is also considered. Known results dealing with optimization problems are thereby generalized.
变分不等式条件数定理的上界
研究考虑了巴拿赫空间中的非线性变分不等式。引入了关于右边的(绝对)条件数概念。定义了变分不等式之间的距离。我们证明,与适当限制的无条件变分不等式之间的距离,从上面看是以条件数倒数的倍数为界的。通过使用同伴论文 [14] 中的类似下界,我们得到了变分不等式的完整条件数定理。我们还考虑了凸优化问题的特殊情况。处理优化问题的已知结果由此得到了推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信