Data-Driven Retail Excellence: Machine Learning for Demand Forecasting and Price Optimization

Vinit Taparia, Piyush Mishra, Nitik Gupta, Hitesh Chandiramani
{"title":"Data-Driven Retail Excellence: Machine Learning for Demand Forecasting and Price Optimization","authors":"Vinit Taparia, Piyush Mishra, Nitik Gupta, Hitesh Chandiramani","doi":"10.13052/jgeu0975-1416.1213","DOIUrl":null,"url":null,"abstract":"Demand forecasting and price optimization are critical aspects of profitability for retailers in a supply chain. Retailers need to adopt innovative strategies to optimize pricing and increase profitability. This research paper proposes a price optimization approach for retailers using machine learning. The approach involves using linear regression to forecast demand incorporating price as an input, followed by price optimization taking into account inventory and perishability costs. The feasibility of using linear regression for price optimization for Stock Keeping Units (SKUs) is assessed using a feasibility index. The linear regression can predict the demand more accurately (23% Mean Absoulute Percentage Error (MAPE)) compared to exponential smoothing with optimised smoothing constant (47.09% MAPE) for 1000 SKUs. Also, the feasibility index can segregate the SKUs with an accuracy of 99%. The machine learning-based demand forecasting can assist retailers in accurately predicting customer demand and improving pricing decisions, while the feasibility index enables retailers to identify SKUs that require alternative pricing strategies.","PeriodicalId":142472,"journal":{"name":"Journal of Graphic Era University","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graphic Era University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jgeu0975-1416.1213","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Demand forecasting and price optimization are critical aspects of profitability for retailers in a supply chain. Retailers need to adopt innovative strategies to optimize pricing and increase profitability. This research paper proposes a price optimization approach for retailers using machine learning. The approach involves using linear regression to forecast demand incorporating price as an input, followed by price optimization taking into account inventory and perishability costs. The feasibility of using linear regression for price optimization for Stock Keeping Units (SKUs) is assessed using a feasibility index. The linear regression can predict the demand more accurately (23% Mean Absoulute Percentage Error (MAPE)) compared to exponential smoothing with optimised smoothing constant (47.09% MAPE) for 1000 SKUs. Also, the feasibility index can segregate the SKUs with an accuracy of 99%. The machine learning-based demand forecasting can assist retailers in accurately predicting customer demand and improving pricing decisions, while the feasibility index enables retailers to identify SKUs that require alternative pricing strategies.
数据驱动的卓越零售:针对需求预测和价格优化的机器学习
需求预测和价格优化是供应链中零售商盈利的关键环节。零售商需要采用创新战略来优化定价和提高盈利能力。本研究论文提出了一种利用机器学习优化零售商价格的方法。该方法包括使用线性回归预测需求,将价格作为输入,然后在考虑库存和易腐成本的情况下进行价格优化。使用线性回归对库存单位(SKU)进行价格优化的可行性指数进行了评估。在 1000 个 SKU 的情况下,与指数平滑法和优化平滑常数(47.09% MAPE)相比,线性回归法能更准确地预测需求(23% 平均无误差百分比(MAPE))。此外,可行性指数能以 99% 的准确率分离 SKU。基于机器学习的需求预测可帮助零售商准确预测客户需求并改进定价决策,而可行性指数则可帮助零售商识别需要替代定价策略的 SKU。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信