{"title":"Improvement of airflow uniformity and noise reduction with optimized V-shape configuration of perforated plate in the air distributor","authors":"Zhe Liu, Bo-Hua Sun, Haihang Cui, Minghua Huang","doi":"10.1177/1420326x231217477","DOIUrl":null,"url":null,"abstract":"The air distributor is the end component of the ventilation system, and its performance directly determines the comfortable and pleasant feeling of the residence. A perforated plate can be added to the air distributor to convert dynamic pressure into static pressure first and then distribute the air flow, which provides better self-adjustment compared with the embedded guide vane structure. However, the perforated plate can lead to a contradiction between head loss, noise and distribution uniformity. To reconcile this problem, a novel V-shape configuration of the perforated plate was put forward in this study. The internal flow and aeroacoustic properties of different types of perforated plates were systematically studied, and a full-scale test platform was built to verify the flow characteristics. The effects of hole size and installation position of the perforated plate on the uniform distribution of air flow were analyzed by the parametric analysis method. Then, the sound pressure level of the optimized perforated plate air distributor was further analyzed. The results show that, with the optimized perforated plate structure, the uniform flow performance was improved by about 30% and the overall sound pressure level was reduced by up to 12 dB.","PeriodicalId":13578,"journal":{"name":"Indoor and Built Environment","volume":"25 9","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indoor and Built Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1420326x231217477","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The air distributor is the end component of the ventilation system, and its performance directly determines the comfortable and pleasant feeling of the residence. A perforated plate can be added to the air distributor to convert dynamic pressure into static pressure first and then distribute the air flow, which provides better self-adjustment compared with the embedded guide vane structure. However, the perforated plate can lead to a contradiction between head loss, noise and distribution uniformity. To reconcile this problem, a novel V-shape configuration of the perforated plate was put forward in this study. The internal flow and aeroacoustic properties of different types of perforated plates were systematically studied, and a full-scale test platform was built to verify the flow characteristics. The effects of hole size and installation position of the perforated plate on the uniform distribution of air flow were analyzed by the parametric analysis method. Then, the sound pressure level of the optimized perforated plate air distributor was further analyzed. The results show that, with the optimized perforated plate structure, the uniform flow performance was improved by about 30% and the overall sound pressure level was reduced by up to 12 dB.
期刊介绍:
Indoor and Built Environment publishes reports on any topic pertaining to the quality of the indoor and built environment, and how these might effect the health, performance, efficiency and comfort of persons living or working there. Topics range from urban infrastructure, design of buildings, and materials used to laboratory studies including building airflow simulations and health effects. This journal is a member of the Committee on Publication Ethics (COPE).