Heuristical Approach for Optimizing Population Mean Using Ratio Estimator in Stratified Random Sampling

IF 0.9 Q3 STATISTICS & PROBABILITY
G. Triveni, Faizan Danish
{"title":"Heuristical Approach for Optimizing Population Mean Using Ratio Estimator in Stratified Random Sampling","authors":"G. Triveni, Faizan Danish","doi":"10.13052/jrss0974-8024.1617","DOIUrl":null,"url":null,"abstract":"In this study, we have developed a Ratio type estimator in Stratified sampling to estimate the population average of study variable by using the information of a concomitant variable. By utilizing Taylor’s series, we have derived the expressions for Bias and MSE upto first degree of approximation. In numerical illustration, employing a real data set, we have demonstrated that the proposed estimator has highest Percentage relative efficiency when compared to the considered existing estimatrs. Furthermore, we have demonstrated that Separate ratio type estimators have the highest relative efficiency when contrasted with the Combined ratio type estimators.","PeriodicalId":42526,"journal":{"name":"Journal of Reliability and Statistical Studies","volume":"18 2","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reliability and Statistical Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13052/jrss0974-8024.1617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we have developed a Ratio type estimator in Stratified sampling to estimate the population average of study variable by using the information of a concomitant variable. By utilizing Taylor’s series, we have derived the expressions for Bias and MSE upto first degree of approximation. In numerical illustration, employing a real data set, we have demonstrated that the proposed estimator has highest Percentage relative efficiency when compared to the considered existing estimatrs. Furthermore, we have demonstrated that Separate ratio type estimators have the highest relative efficiency when contrasted with the Combined ratio type estimators.
在分层随机抽样中使用比率估计器优化人口平均值的启发式方法
在本研究中,我们开发了一种分层抽样中的比率型估计器,利用伴随变量的信息来估计研究变量的人口平均值。通过使用泰勒级数,我们推导出了偏差和 MSE 的表达式,直至一级近似值。通过使用真实数据集进行数值说明,我们证明了与现有的估计方法相比,所提出的估计方法具有最高的百分比相对效率。此外,我们还证明,与组合比率型估计器相比,分离比率型估计器具有最高的相对效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
12.50%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信