TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA

Dat Tien Nguyen, Chau Ngoc Ha, Ha Thanh Thi Hoang, Truong Nhat Nguyen, Tuyet Ngoc Huynh, Hai Thanh Nguyen
{"title":"TAEKWONDO POSE ESTIMATION WITH DEEP LEARNING ARCHITECTURES ON ONE-DIMENSIONAL AND TWO-DIMENSIONAL DATA","authors":"Dat Tien Nguyen, Chau Ngoc Ha, Ha Thanh Thi Hoang, Truong Nhat Nguyen, Tuyet Ngoc Huynh, Hai Thanh Nguyen","doi":"10.15625/1813-9663/18043","DOIUrl":null,"url":null,"abstract":"Practicing sports is an activity that helps people maintain and improve their health, enhance memory and concentration, reduce anxiety and stress, and train teamwork and leadership ability. With the development of science and technology, artificial intelligence in sports has become increasingly popular with the public and brings many benefits. In particular, many applications help people track and evaluate athletes' achievements in competitions. This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.","PeriodicalId":15444,"journal":{"name":"Journal of Computer Science and Cybernetics","volume":"59 18","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/1813-9663/18043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Practicing sports is an activity that helps people maintain and improve their health, enhance memory and concentration, reduce anxiety and stress, and train teamwork and leadership ability. With the development of science and technology, artificial intelligence in sports has become increasingly popular with the public and brings many benefits. In particular, many applications help people track and evaluate athletes' achievements in competitions. This study extracts images from Taekwondo videos and generates skeleton data from frames using the Fast Forward Moving Picture Experts Group (FFMPEG) technique using MoveNet. After that, we use deep learning architectures such as Long Short-Term Memory Networks, Convolutional Long Short-Term Memory, and Long-term Recurrent Convolutional Networks to perform the poses classification tasks in Taegeuk in Jang lessons. This work presents two approaches. The first approach uses a sequence skeleton extracted from the image by Movenet. Second, we use sequence images to train using video classification architecture. Finally, we recognize poses in sports lessons using skeleton data to remove noise in the image, such as background and extraneous objects behind the exerciser. As a result, our proposed method has achieved promising performance in pose classification tasks in an introductory Taekwondo lesson.
在一维和二维数据上利用深度学习架构进行跆拳道姿势估计
体育运动是一项有助于人们保持和改善健康、增强记忆力和注意力、减轻焦虑和压力、锻炼团队精神和领导能力的活动。随着科学技术的发展,人工智能在体育运动中的应用越来越受到大众的青睐,并带来了诸多益处。特别是,许多应用程序可以帮助人们跟踪和评估运动员在比赛中取得的成绩。本研究从跆拳道视频中提取图像,并利用移动网络(MoveNet)使用快速移动图像专家组(FFMPEG)技术从帧中生成骨架数据。然后,我们使用长短期记忆网络、卷积长短期记忆和长期递归卷积网络等深度学习架构来执行张氏跆拳道课程中的姿势分类任务。这项工作提出了两种方法。第一种方法使用 Movenet 从图像中提取的序列骨架。其次,我们使用序列图像来训练视频分类架构。最后,我们使用骨架数据识别体育课中的姿势,以去除图像中的噪声,如背景和运动者身后的无关物体。结果,我们提出的方法在跆拳道入门课程的姿势分类任务中取得了可喜的成绩。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信