A truncation error bound for branched continued fractions of the special form on subsets of angular domains

IF 1 Q1 MATHEMATICS
D. Bodnar, O.S. Bodnar, I. Bilanyk
{"title":"A truncation error bound for branched continued fractions of the special form on subsets of angular domains","authors":"D. Bodnar, O.S. Bodnar, I. Bilanyk","doi":"10.15330/cmp.15.2.437-448","DOIUrl":null,"url":null,"abstract":"Truncation error bounds for branched continued fractions of the special form are established. These fractions can be obtained by fixing the values of variables in branched continued fractions with independent variables, which is an effective tool for approximating complex functions of two variables. The main result is a two-dimensional analog of the theorem considered in [SCIAM J. Numer. Anal. 1983, 20 (3), 1187$-$1197] for van Vleck's continued fractions. For its proving, the $\\mathcal{C}$-figure convergence and estimates of the difference between approximants of fractions in an angular domain are significantly used. In comparison with the previously established results, the elements of a branched continued fraction of the special form can tend to zero at a certain rate. An example of the effectiveness of using a two-dimensional analog of van Vleck's theorem is considered.","PeriodicalId":42912,"journal":{"name":"Carpathian Mathematical Publications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carpathian Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15330/cmp.15.2.437-448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Truncation error bounds for branched continued fractions of the special form are established. These fractions can be obtained by fixing the values of variables in branched continued fractions with independent variables, which is an effective tool for approximating complex functions of two variables. The main result is a two-dimensional analog of the theorem considered in [SCIAM J. Numer. Anal. 1983, 20 (3), 1187$-$1197] for van Vleck's continued fractions. For its proving, the $\mathcal{C}$-figure convergence and estimates of the difference between approximants of fractions in an angular domain are significantly used. In comparison with the previously established results, the elements of a branched continued fraction of the special form can tend to zero at a certain rate. An example of the effectiveness of using a two-dimensional analog of van Vleck's theorem is considered.
角域子集上特殊形式分枝续分数的截断误差约束
建立了特殊形式支链续分数的截断误差界限。这些分数可以通过固定带自变量的支化连续分数中的变量值获得,这是逼近两变量复变函数的有效工具。主要结果是 [SCIAM J. Numer. Anal.为了证明该定理,大量使用了 $\mathcal{C}$ 图收敛性和角域中分数近似值之间差值的估计。与之前建立的结果相比,特殊形式的分支连续分数的元素能以一定的速率趋于零。本论文以 van Vleck 定理的二维类比为例,说明了使用该定理的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
12.50%
发文量
31
审稿时长
25 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信