Enhancing Sustainability through Automated Waste Classification: A Machine Intelligence Framework

A. Sleem
{"title":"Enhancing Sustainability through Automated Waste Classification: A Machine Intelligence Framework","authors":"A. Sleem","doi":"10.61185/smij.2023.55106","DOIUrl":null,"url":null,"abstract":"This study presents a novel framework integrating a deep learning image classifier into waste classification systems for enhancing sustainability. Leveraging diverse waste image datasets, our approach employs a convolutional neural network (CNN) architecture tailored for precise waste material identification and sorting from images. Through transfer learning and dataset augmentation techniques, the CNN model demonstrates robust performance in real-time waste categorization, surpassing conventional methods. Experimental validation using comprehensive waste image datasets showcases notable advancements in classification accuracy and operational efficiency. The results underscore the potential of deep learning image classifiers in optimizing waste sorting processes, contributing to more effective recycling strategies, and promoting environmental sustainability. This research emphasizes the practical implications of integrating deep learning techniques into waste management systems, offering actionable insights for stakeholders and waste management professionals seeking innovative solutions for sustainable waste handling.","PeriodicalId":148129,"journal":{"name":"Sustainable Machine Intelligence Journal","volume":"21 3-4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Machine Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61185/smij.2023.55106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a novel framework integrating a deep learning image classifier into waste classification systems for enhancing sustainability. Leveraging diverse waste image datasets, our approach employs a convolutional neural network (CNN) architecture tailored for precise waste material identification and sorting from images. Through transfer learning and dataset augmentation techniques, the CNN model demonstrates robust performance in real-time waste categorization, surpassing conventional methods. Experimental validation using comprehensive waste image datasets showcases notable advancements in classification accuracy and operational efficiency. The results underscore the potential of deep learning image classifiers in optimizing waste sorting processes, contributing to more effective recycling strategies, and promoting environmental sustainability. This research emphasizes the practical implications of integrating deep learning techniques into waste management systems, offering actionable insights for stakeholders and waste management professionals seeking innovative solutions for sustainable waste handling.
通过自动废物分类提高可持续性:机器智能框架
本研究提出了一种新颖的框架,将深度学习图像分类器集成到废物分类系统中,以提高可持续性。利用不同的废物图像数据集,我们的方法采用了一种卷积神经网络(CNN)架构,专门用于从图像中精确识别和分类废物材料。通过迁移学习和数据集增强技术,CNN 模型在实时废物分类方面表现出了超越传统方法的强大性能。使用综合废物图像数据集进行的实验验证表明,该模型在分类准确性和运行效率方面取得了显著进步。这些结果凸显了深度学习图像分类器在优化垃圾分类流程、促进更有效的回收战略和促进环境可持续发展方面的潜力。这项研究强调了将深度学习技术集成到废物管理系统中的实际意义,为寻求可持续废物处理创新解决方案的利益相关者和废物管理专业人士提供了可行的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信