Unraveling the Peltzman Effect: The Significance of Agent’s Type

IF 0.4 Q3 LAW
Konrad Grabiszewski, A. Horenstein
{"title":"Unraveling the Peltzman Effect: The Significance of Agent’s Type","authors":"Konrad Grabiszewski, A. Horenstein","doi":"10.1515/rle-2023-0072","DOIUrl":null,"url":null,"abstract":"Abstract The Peltzman effect posits that implementing safety measures incentivizes agents to reduce their effort to a degree where these measures become counterproductive. This paper emphasizes the significance of including the agent’s type (skills, attributes) when analyzing the effectiveness of safety measures. Using data from iRacing, an online racing simulator, we find that the detection of the Peltzman effect is solely attributed to the omitted variable bias; specifically, the omission of a variable capturing the agent’s type. Additionally, our data demonstrates that enhancing types (increasing skills) leads to safety improvements.","PeriodicalId":44795,"journal":{"name":"Review of Law & Economics","volume":"182 ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Law & Economics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/rle-2023-0072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LAW","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The Peltzman effect posits that implementing safety measures incentivizes agents to reduce their effort to a degree where these measures become counterproductive. This paper emphasizes the significance of including the agent’s type (skills, attributes) when analyzing the effectiveness of safety measures. Using data from iRacing, an online racing simulator, we find that the detection of the Peltzman effect is solely attributed to the omitted variable bias; specifically, the omission of a variable capturing the agent’s type. Additionally, our data demonstrates that enhancing types (increasing skills) leads to safety improvements.
揭开佩尔茨曼效应的神秘面纱:代理人类型的重要性
摘要 佩尔兹曼效应(Peltzman effect)认为,实施安全措施会促使代理人减少努力,以至于这些措施适得其反。本文强调了在分析安全措施的有效性时将代理类型(技能、属性)包括在内的重要性。利用在线赛车模拟器 iRacing 的数据,我们发现发现佩尔兹曼效应完全归因于遗漏变量偏差;具体来说,就是遗漏了捕捉代理人类型的变量。此外,我们的数据还证明,增强类型(提高技能)可提高安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
11
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信