Juan F. Gomez, Antonio R. Uguina, Javier Panadero, Angel A. Juan
{"title":"A Learnheuristic Algorithm for the Capacitated Dispersion Problem under Dynamic Conditions","authors":"Juan F. Gomez, Antonio R. Uguina, Javier Panadero, Angel A. Juan","doi":"10.3390/a16120532","DOIUrl":null,"url":null,"abstract":"The capacitated dispersion problem, which is a variant of the maximum diversity problem, aims to determine a set of elements within a network. These elements could symbolize, for instance, facilities in a supply chain or transmission nodes in a telecommunication network. While each element typically has a bounded service capacity, in this research, we introduce a twist. The capacity of each node might be influenced by a random Bernoulli component, thereby rendering the possibility of a node having zero capacity, which is contingent upon a black box mechanism that accounts for environmental variables. Recognizing the inherent complexity and the NP-hard nature of the capacitated dispersion problem, heuristic algorithms have become indispensable for handling larger instances. In this paper, we introduce a novel approach by hybridizing a heuristic algorithm with reinforcement learning to address this intricate problem variant.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"85 ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The capacitated dispersion problem, which is a variant of the maximum diversity problem, aims to determine a set of elements within a network. These elements could symbolize, for instance, facilities in a supply chain or transmission nodes in a telecommunication network. While each element typically has a bounded service capacity, in this research, we introduce a twist. The capacity of each node might be influenced by a random Bernoulli component, thereby rendering the possibility of a node having zero capacity, which is contingent upon a black box mechanism that accounts for environmental variables. Recognizing the inherent complexity and the NP-hard nature of the capacitated dispersion problem, heuristic algorithms have become indispensable for handling larger instances. In this paper, we introduce a novel approach by hybridizing a heuristic algorithm with reinforcement learning to address this intricate problem variant.