A Learnheuristic Algorithm for the Capacitated Dispersion Problem under Dynamic Conditions

IF 1.8 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Algorithms Pub Date : 2023-11-22 DOI:10.3390/a16120532
Juan F. Gomez, Antonio R. Uguina, Javier Panadero, Angel A. Juan
{"title":"A Learnheuristic Algorithm for the Capacitated Dispersion Problem under Dynamic Conditions","authors":"Juan F. Gomez, Antonio R. Uguina, Javier Panadero, Angel A. Juan","doi":"10.3390/a16120532","DOIUrl":null,"url":null,"abstract":"The capacitated dispersion problem, which is a variant of the maximum diversity problem, aims to determine a set of elements within a network. These elements could symbolize, for instance, facilities in a supply chain or transmission nodes in a telecommunication network. While each element typically has a bounded service capacity, in this research, we introduce a twist. The capacity of each node might be influenced by a random Bernoulli component, thereby rendering the possibility of a node having zero capacity, which is contingent upon a black box mechanism that accounts for environmental variables. Recognizing the inherent complexity and the NP-hard nature of the capacitated dispersion problem, heuristic algorithms have become indispensable for handling larger instances. In this paper, we introduce a novel approach by hybridizing a heuristic algorithm with reinforcement learning to address this intricate problem variant.","PeriodicalId":7636,"journal":{"name":"Algorithms","volume":"85 ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/a16120532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The capacitated dispersion problem, which is a variant of the maximum diversity problem, aims to determine a set of elements within a network. These elements could symbolize, for instance, facilities in a supply chain or transmission nodes in a telecommunication network. While each element typically has a bounded service capacity, in this research, we introduce a twist. The capacity of each node might be influenced by a random Bernoulli component, thereby rendering the possibility of a node having zero capacity, which is contingent upon a black box mechanism that accounts for environmental variables. Recognizing the inherent complexity and the NP-hard nature of the capacitated dispersion problem, heuristic algorithms have become indispensable for handling larger instances. In this paper, we introduce a novel approach by hybridizing a heuristic algorithm with reinforcement learning to address this intricate problem variant.
动态条件下容量分散问题的学习启发式算法
容错分散问题是最大分集问题的一个变种,旨在确定网络中的一组元素。这些元素可以是供应链中的设施,也可以是电信网络中的传输节点。虽然每个元素通常都有一定的服务能力,但在本研究中,我们引入了一个转折点。每个节点的容量可能会受到随机伯努利成分的影响,从而导致节点容量为零的可能性,而这取决于一个考虑环境变量的黑盒机制。考虑到容量分散问题的内在复杂性和 NP 难度,启发式算法已成为处理大型实例不可或缺的方法。在本文中,我们通过混合启发式算法和强化学习引入了一种新方法,以解决这一错综复杂的问题变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithms
Algorithms Mathematics-Numerical Analysis
CiteScore
4.10
自引率
4.30%
发文量
394
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信