Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming

IF 1.9 3区 心理学 Q2 EDUCATION & EDUCATIONAL RESEARCH
Francesco Innocenti, M. Candel, Frans E. S. Tan, Gerard J. P. van Breukelen
{"title":"Sample Size Calculation and Optimal Design for Multivariate Regression-Based Norming","authors":"Francesco Innocenti, M. Candel, Frans E. S. Tan, Gerard J. P. van Breukelen","doi":"10.3102/10769986231210807","DOIUrl":null,"url":null,"abstract":"Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based approach must be adopted for at least two reasons: (1) to take into account the correlations between the measures of the same subject, in order to test certain scientific hypotheses and to reduce misclassification of subjects in clinical practice, and (2) to reduce the number of significance tests involved in selecting predictors for the purpose of norming, thus preventing the inflation of the type I error rate. A new multivariate regression-based approach is proposed that combines all measures for an individual through the Mahalanobis distance, thus providing an indicator of the individual’s overall performance. Furthermore, optimal designs for the normative study are derived under five multivariate polynomial regression models, assuming multivariate normality and homoscedasticity of the residuals, and efficient robust designs are presented in case of uncertainty about the correct model for the analysis of the normative sample. Sample size calculation formulas are provided for the new Mahalanobis distance-based approach. The results are illustrated with data from the Maastricht Aging Study (MAAS).","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"106 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3102/10769986231210807","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0

Abstract

Normative studies are needed to obtain norms for comparing individuals with the reference population on relevant clinical or educational measures. Norms can be obtained in an efficient way by regressing the test score on relevant predictors, such as age and sex. When several measures are normed with the same sample, a multivariate regression-based approach must be adopted for at least two reasons: (1) to take into account the correlations between the measures of the same subject, in order to test certain scientific hypotheses and to reduce misclassification of subjects in clinical practice, and (2) to reduce the number of significance tests involved in selecting predictors for the purpose of norming, thus preventing the inflation of the type I error rate. A new multivariate regression-based approach is proposed that combines all measures for an individual through the Mahalanobis distance, thus providing an indicator of the individual’s overall performance. Furthermore, optimal designs for the normative study are derived under five multivariate polynomial regression models, assuming multivariate normality and homoscedasticity of the residuals, and efficient robust designs are presented in case of uncertainty about the correct model for the analysis of the normative sample. Sample size calculation formulas are provided for the new Mahalanobis distance-based approach. The results are illustrated with data from the Maastricht Aging Study (MAAS).
基于多元回归规范的样本量计算和优化设计
需要进行常模研究,以获得个人与参照人群在相关临床或教育测量方面的比较常模。通过对相关预测因素(如年龄和性别)对测试得分进行回归,可以有效地获得常模。在对同一样本的多个测量指标进行常模化时,必须采用基于多元回归的方法,原因至少有两个:(1) 考虑同一受试者的测量指标之间的相关性,以检验某些科学假设,并减少临床实践中对受试者的错误分类;(2) 减少为常模化目的而选择预测因子时所涉及的显著性检验次数,从而防止 I 类错误率的膨胀。本文提出了一种基于多元回归的新方法,通过马哈拉诺比斯距离(Mahalanobis distance)将个体的所有测量指标结合起来,从而提供个体整体表现的指标。此外,假定残差的多元正态性和同方差性,在五个多元多项式回归模型下得出了常模研究的最优设计,并在不确定常模样本分析的正确模型的情况下提出了高效稳健设计。为基于 Mahalanobis 距离的新方法提供了样本量计算公式。结果用马斯特里赫特老龄化研究(MAAS)的数据进行了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
4.20%
发文量
21
期刊介绍: Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信