{"title":"Is electrostrain > 1% in oxygen deficient Na0.5Bi0.5TiO3 a composition effect?","authors":"Getaw Abebe Tina, Gudeta Jafo Muleta, Gobinda Das Adhikary, Rajeev Ranjan","doi":"10.1093/oxfmat/itad021","DOIUrl":null,"url":null,"abstract":"For over two decades Na0.5Bi0.5TiO3 (NBT) -based lead-free piezoelectrics have attracted attention due to its ability to exhibit large electric-field driven strain. Compared to the popular Pb(Zr, Ti)O3 (PZT)-based piezoelectrics, which exhibit electrostrain of about 0.3%, the derivatives of NBT-based lead-free piezoelectrics at the ergodic—non ergodic relaxor crossover exhibit larger electric-field driven strain ∼0.45%. In recent years, there has been a concerted effort to increase the maximum electrostrain in lead-free piezoceramics. Recent reports suggest that oxygen deficient NBT- based piezoceramics can exhibit electrostrain ∼ 1%. In this paper we explore this phenomenon in detail and show that the large electric field driven strain is primarily a consequence of reducing the thickness of the disc dimension below 500 microns.","PeriodicalId":74385,"journal":{"name":"Oxford open materials science","volume":"288 ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxford open materials science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/oxfmat/itad021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
For over two decades Na0.5Bi0.5TiO3 (NBT) -based lead-free piezoelectrics have attracted attention due to its ability to exhibit large electric-field driven strain. Compared to the popular Pb(Zr, Ti)O3 (PZT)-based piezoelectrics, which exhibit electrostrain of about 0.3%, the derivatives of NBT-based lead-free piezoelectrics at the ergodic—non ergodic relaxor crossover exhibit larger electric-field driven strain ∼0.45%. In recent years, there has been a concerted effort to increase the maximum electrostrain in lead-free piezoceramics. Recent reports suggest that oxygen deficient NBT- based piezoceramics can exhibit electrostrain ∼ 1%. In this paper we explore this phenomenon in detail and show that the large electric field driven strain is primarily a consequence of reducing the thickness of the disc dimension below 500 microns.