Distillation of Large Language Models for Text Simplification

Олександр Скуржанський
{"title":"Distillation of Large Language Models for Text Simplification","authors":"Олександр Скуржанський","doi":"10.31713/mcit.2023.071","DOIUrl":null,"url":null,"abstract":"This work presents a comprehensive methodology for harnessing the capabilities of Large Language Models to address specific Natural Language Processing tasks, with a focus on Text Simplification. While LLMs have demonstrated their prowess in tackling a wide range of NLP challenges, their demanding computational requirements can render them impractical for real-time online inference. In response to this limitation, we suggest the concept of text distillation, a technique aimed at effectively transferring the knowledge stored within LLMs to more compact and computationally efficient neural networks.","PeriodicalId":281857,"journal":{"name":"Modeling Control and Information Technologies","volume":"29 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modeling Control and Information Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31713/mcit.2023.071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a comprehensive methodology for harnessing the capabilities of Large Language Models to address specific Natural Language Processing tasks, with a focus on Text Simplification. While LLMs have demonstrated their prowess in tackling a wide range of NLP challenges, their demanding computational requirements can render them impractical for real-time online inference. In response to this limitation, we suggest the concept of text distillation, a technique aimed at effectively transferring the knowledge stored within LLMs to more compact and computationally efficient neural networks.
为文本简化提炼大型语言模型
这项研究提出了一种综合方法,利用大型语言模型的能力来解决特定的自然语言处理任务,重点是文本简化。虽然大型语言模型在应对各种 NLP 挑战方面表现出了卓越的能力,但其苛刻的计算要求可能会使其无法用于实时在线推理。针对这一限制,我们提出了文本蒸馏的概念,这一技术旨在将 LLM 中存储的知识有效地转移到更紧凑、计算效率更高的神经网络中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信