{"title":"FILTER SELECTION FOR REMOVING NOISE FROM CT SCAN IMAGES USING DIGITAL IMAGE PROCESSING ALGORITHM","authors":"A. Siddiqi","doi":"10.4015/s1016237223500382","DOIUrl":null,"url":null,"abstract":"Image de-noising is an essential tool for removing unwanted signals from an image. In Computed Tomography (CT) images, the image quality is degraded by the absorption of X-rays and quantum noise, which is generated due to the excitement of X-ray photons. Removal of noise and preservation of information in the CT images becomes a challenge for an imaging algorithm design. During the algorithm design selection of dataset is an important aspect for deducing results. The dataset used in this research comprises of 60 CT scan images of liver cancer archived from the arterial contrast enhanced phase. In this phase the cancer cells appear more intense as compared to the healthy liver tissue due to the absorption of contrast enhancing reagent. The experimentation for appropriate noise removal filter selection is done by testing the images using Mean, Median and Weiner Filters. The filter selected should give an image output which has minimal randomness, sharper boundaries and no blur. The de-noised image will provide a better visibility of the disease to the radiologist and physician. The performance parameters used for the assessment of various filters used in the study include visual assessment, entropy and signal to noise ratio (SNR) of the images. Median filter gives an accuracy of 96%, mean filter is 76.2% accurate with respect to original information and Weiner filters has an accuracy of 79.7%.","PeriodicalId":8862,"journal":{"name":"Biomedical Engineering: Applications, Basis and Communications","volume":"16 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Engineering: Applications, Basis and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4015/s1016237223500382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Image de-noising is an essential tool for removing unwanted signals from an image. In Computed Tomography (CT) images, the image quality is degraded by the absorption of X-rays and quantum noise, which is generated due to the excitement of X-ray photons. Removal of noise and preservation of information in the CT images becomes a challenge for an imaging algorithm design. During the algorithm design selection of dataset is an important aspect for deducing results. The dataset used in this research comprises of 60 CT scan images of liver cancer archived from the arterial contrast enhanced phase. In this phase the cancer cells appear more intense as compared to the healthy liver tissue due to the absorption of contrast enhancing reagent. The experimentation for appropriate noise removal filter selection is done by testing the images using Mean, Median and Weiner Filters. The filter selected should give an image output which has minimal randomness, sharper boundaries and no blur. The de-noised image will provide a better visibility of the disease to the radiologist and physician. The performance parameters used for the assessment of various filters used in the study include visual assessment, entropy and signal to noise ratio (SNR) of the images. Median filter gives an accuracy of 96%, mean filter is 76.2% accurate with respect to original information and Weiner filters has an accuracy of 79.7%.
期刊介绍:
Biomedical Engineering: Applications, Basis and Communications is an international, interdisciplinary journal aiming at publishing up-to-date contributions on original clinical and basic research in the biomedical engineering. Research of biomedical engineering has grown tremendously in the past few decades. Meanwhile, several outstanding journals in the field have emerged, with different emphases and objectives. We hope this journal will serve as a new forum for both scientists and clinicians to share their ideas and the results of their studies.
Biomedical Engineering: Applications, Basis and Communications explores all facets of biomedical engineering, with emphasis on both the clinical and scientific aspects of the study. It covers the fields of bioelectronics, biomaterials, biomechanics, bioinformatics, nano-biological sciences and clinical engineering. The journal fulfils this aim by publishing regular research / clinical articles, short communications, technical notes and review papers. Papers from both basic research and clinical investigations will be considered.