Model Design and Applied Methodology in Geothermal Simulations in Very Low Enthalpy for Big Data Applications

Data Pub Date : 2023-11-23 DOI:10.3390/data8120176
Roberto Arranz-Revenga, María Pilar Dorrego de Luxán, Juan Herrera Herbert, Luis Enrique García Cambronero
{"title":"Model Design and Applied Methodology in Geothermal Simulations in Very Low Enthalpy for Big Data Applications","authors":"Roberto Arranz-Revenga, María Pilar Dorrego de Luxán, Juan Herrera Herbert, Luis Enrique García Cambronero","doi":"10.3390/data8120176","DOIUrl":null,"url":null,"abstract":"Low-enthalpy geothermal installations for heating, air conditioning, and domestic hot water are gaining traction due to efforts towards energy decarbonization. This article is part of a broader research project aimed at employing artificial intelligence and big data techniques to develop a predictive system for the thermal behavior of the ground in very low-enthalpy geothermal applications. In this initial article, a summarized process is outlined to generate large quantities of synthetic data through a ground simulation method. The proposed theoretical model allows simulation of the soil’s thermal behavior using an electrical equivalent. The electrical circuit derived is loaded into a simulation program along with an input function representing the system’s thermal load pattern. The simulator responds with another function that calculates the values of the ground over time. Some examples of value conversion and the utility of the input function system to encode thermal loads during simulation are demonstrated. It bears the limitation of invalidity in the presence of underground water currents. Model validation is pending, and once defined, a corresponding testing plan will be proposed for its validation.","PeriodicalId":502371,"journal":{"name":"Data","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/data8120176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Low-enthalpy geothermal installations for heating, air conditioning, and domestic hot water are gaining traction due to efforts towards energy decarbonization. This article is part of a broader research project aimed at employing artificial intelligence and big data techniques to develop a predictive system for the thermal behavior of the ground in very low-enthalpy geothermal applications. In this initial article, a summarized process is outlined to generate large quantities of synthetic data through a ground simulation method. The proposed theoretical model allows simulation of the soil’s thermal behavior using an electrical equivalent. The electrical circuit derived is loaded into a simulation program along with an input function representing the system’s thermal load pattern. The simulator responds with another function that calculates the values of the ground over time. Some examples of value conversion and the utility of the input function system to encode thermal loads during simulation are demonstrated. It bears the limitation of invalidity in the presence of underground water currents. Model validation is pending, and once defined, a corresponding testing plan will be proposed for its validation.
面向大数据应用的极低焓地热模拟中的模型设计和应用方法
由于能源去碳化的努力,用于供暖、空调和生活热水的低焓地热装置正日益受到重视。本文是一个更广泛的研究项目的一部分,该项目旨在利用人工智能和大数据技术,为极低焓地热应用中的地热行为开发一个预测系统。在这篇初步文章中,概述了通过地面模拟方法生成大量合成数据的总结过程。所提出的理论模型允许使用电气等效模拟土壤的热行为。导出的电路与代表系统热负荷模式的输入函数一起加载到模拟程序中。模拟器通过另一个函数计算出地面随时间变化的数值。我们举例说明了数值转换和输入函数系统在模拟过程中编码热负荷的实用性。该系统的局限性是在地下水流存在的情况下无效。模型验证尚未完成,一旦确定,将提出相应的测试计划进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信