{"title":"Differential, Linear, and Meet-in-the-Middle Attacks on the Lightweight Block Cipher RBFK","authors":"Sugio Nobuyuki","doi":"10.1049/2023/6691726","DOIUrl":null,"url":null,"abstract":"Randomized butterfly architecture of fast Fourier transform for key cipher (RBFK) is the lightweight block cipher for Internet of things devices in an edge computing environment. Although the authors claimed that RBFK is secure against differential cryptanalysis, linear cryptanalysis, impossible differential attack, and zero correlation linear cryptanalysis, the details were not explained in the literature. Therefore, we have evaluated the security of RBFK by application of differential cryptanalysis, linear cryptanalysis, and meet-in-the-middle (MITM) attack and have found that RBFK is not secure against these attacks. This paper introduces not only a distinguish attack but also key recovery attacks on full-round RBFK. In the distinguish attack scenario, data for differential cryptanalysis are two, and the time complexity is one for an exclusive-OR operation. In the key recovery attack scenario, the data for linear cryptanalysis are one pair of known plaintext–ciphertext. The time complexity is one operation for a linear sum. Data for an MITM attack are two. The time complexity is 2 48 encryptions; the memory complexity is 2 45 bytes. Because the vulnerabilities are identified in the round function and the key scheduling part, we propose some improvements for RBFK against these attacks.","PeriodicalId":50380,"journal":{"name":"IET Information Security","volume":"130 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Information Security","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1049/2023/6691726","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Randomized butterfly architecture of fast Fourier transform for key cipher (RBFK) is the lightweight block cipher for Internet of things devices in an edge computing environment. Although the authors claimed that RBFK is secure against differential cryptanalysis, linear cryptanalysis, impossible differential attack, and zero correlation linear cryptanalysis, the details were not explained in the literature. Therefore, we have evaluated the security of RBFK by application of differential cryptanalysis, linear cryptanalysis, and meet-in-the-middle (MITM) attack and have found that RBFK is not secure against these attacks. This paper introduces not only a distinguish attack but also key recovery attacks on full-round RBFK. In the distinguish attack scenario, data for differential cryptanalysis are two, and the time complexity is one for an exclusive-OR operation. In the key recovery attack scenario, the data for linear cryptanalysis are one pair of known plaintext–ciphertext. The time complexity is one operation for a linear sum. Data for an MITM attack are two. The time complexity is 2 48 encryptions; the memory complexity is 2 45 bytes. Because the vulnerabilities are identified in the round function and the key scheduling part, we propose some improvements for RBFK against these attacks.
期刊介绍:
IET Information Security publishes original research papers in the following areas of information security and cryptography. Submitting authors should specify clearly in their covering statement the area into which their paper falls.
Scope:
Access Control and Database Security
Ad-Hoc Network Aspects
Anonymity and E-Voting
Authentication
Block Ciphers and Hash Functions
Blockchain, Bitcoin (Technical aspects only)
Broadcast Encryption and Traitor Tracing
Combinatorial Aspects
Covert Channels and Information Flow
Critical Infrastructures
Cryptanalysis
Dependability
Digital Rights Management
Digital Signature Schemes
Digital Steganography
Economic Aspects of Information Security
Elliptic Curve Cryptography and Number Theory
Embedded Systems Aspects
Embedded Systems Security and Forensics
Financial Cryptography
Firewall Security
Formal Methods and Security Verification
Human Aspects
Information Warfare and Survivability
Intrusion Detection
Java and XML Security
Key Distribution
Key Management
Malware
Multi-Party Computation and Threshold Cryptography
Peer-to-peer Security
PKIs
Public-Key and Hybrid Encryption
Quantum Cryptography
Risks of using Computers
Robust Networks
Secret Sharing
Secure Electronic Commerce
Software Obfuscation
Stream Ciphers
Trust Models
Watermarking and Fingerprinting
Special Issues. Current Call for Papers:
Security on Mobile and IoT devices - https://digital-library.theiet.org/files/IET_IFS_SMID_CFP.pdf