{"title":"Diagnosing Faults in Different Technical Systems: How Requirements for Diagnosticians Can Be Revealed by Comparing Domain Characteristics","authors":"Judith Schmidt, Romy Müller","doi":"10.3390/machines11121045","DOIUrl":null,"url":null,"abstract":"In complex work domains, not all possible faults can be anticipated by designers or handled by automation. Humans therefore play an important role in fault diagnosis. To support their diagnostic reasoning, it is necessary to understand the requirements that diagnosticians face. While much research has dealt with identifying domain-general aspects of fault diagnosis, the present exploratory study examined domain-specific influences on the requirements for diagnosticians. Scenario-based interviews were conducted with nine experts from two domains: the car domain and the packaging machine domain. The interviews revealed several factors that influence the requirements for successful fault diagnosis. These factors were summarized in five categories, namely domain background, technical system, typical faults, diagnostic process, and requirements. Based on these factors, we developed the Domain Requirements Model to predict requirements for diagnosticians (e.g., the need for empirical knowledge) from domain characteristics (e.g., the degree to which changes in inputs are available as domain knowledge) or characteristics of the diagnostic process (e.g., the extent of support). The model is discussed considering the psychological literature on fault diagnosis, and first insights are provided that show how the model can be used to predict requirements of diagnostic reasoning beyond the two domains studied here.","PeriodicalId":48519,"journal":{"name":"Machines","volume":"19 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/machines11121045","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In complex work domains, not all possible faults can be anticipated by designers or handled by automation. Humans therefore play an important role in fault diagnosis. To support their diagnostic reasoning, it is necessary to understand the requirements that diagnosticians face. While much research has dealt with identifying domain-general aspects of fault diagnosis, the present exploratory study examined domain-specific influences on the requirements for diagnosticians. Scenario-based interviews were conducted with nine experts from two domains: the car domain and the packaging machine domain. The interviews revealed several factors that influence the requirements for successful fault diagnosis. These factors were summarized in five categories, namely domain background, technical system, typical faults, diagnostic process, and requirements. Based on these factors, we developed the Domain Requirements Model to predict requirements for diagnosticians (e.g., the need for empirical knowledge) from domain characteristics (e.g., the degree to which changes in inputs are available as domain knowledge) or characteristics of the diagnostic process (e.g., the extent of support). The model is discussed considering the psychological literature on fault diagnosis, and first insights are provided that show how the model can be used to predict requirements of diagnostic reasoning beyond the two domains studied here.
期刊介绍:
Machines (ISSN 2075-1702) is an international, peer-reviewed journal on machinery and engineering. It publishes research articles, reviews, short communications and letters. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: *manuscripts regarding research proposals and research ideas will be particularly welcomed *electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material Subject Areas: applications of automation, systems and control engineering, electronic engineering, mechanical engineering, computer engineering, mechatronics, robotics, industrial design, human-machine-interfaces, mechanical systems, machines and related components, machine vision, history of technology and industrial revolution, turbo machinery, machine diagnostics and prognostics (condition monitoring), machine design.