M. Zahidy, D. Ribezzo, R. Muller, J. Riebesehl, A. Zavatta, M. Galili, L. Oxenløwe, Davide Bacco
{"title":"Single-photon-based clock analysis and recovery in quantum key distribution","authors":"M. Zahidy, D. Ribezzo, R. Muller, J. Riebesehl, A. Zavatta, M. Galili, L. Oxenløwe, Davide Bacco","doi":"10.1116/5.0167549","DOIUrl":null,"url":null,"abstract":"Quantum key distribution is one of the first quantum technologies ready for the market. Current quantum telecommunication systems usually utilize a service channel for synchronizing the transmitter (Alice) and the receiver (Bob). However, the possibility of removing this service channel and exploiting a clock recovery method are intriguing for future implementation, both in fiber and free-space links. In this paper, we investigate criteria to recover the clock in a quantum communication scenario and experimentally demonstrated the possibility of using a quantum-based clock recovery system in a time-bin quantum key distribution protocol. The performance of the clock recovery technique, in terms of quantum bit error rate and secret key rate, is equivalent to using the service channel for clock sharing.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":"1 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0167549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum key distribution is one of the first quantum technologies ready for the market. Current quantum telecommunication systems usually utilize a service channel for synchronizing the transmitter (Alice) and the receiver (Bob). However, the possibility of removing this service channel and exploiting a clock recovery method are intriguing for future implementation, both in fiber and free-space links. In this paper, we investigate criteria to recover the clock in a quantum communication scenario and experimentally demonstrated the possibility of using a quantum-based clock recovery system in a time-bin quantum key distribution protocol. The performance of the clock recovery technique, in terms of quantum bit error rate and secret key rate, is equivalent to using the service channel for clock sharing.