A computational description of time-dependent transport of a water-based nanofluid with hybrid nanocomposite Cu–Al2O3 over a parabolic surface by Keller-box scheme: A modified Buongiorno model

Sohita Rajput, K. Bhattacharyya, Dimpal Sharma, Amit Kumar Pandey, Ali J. Chamkha
{"title":"A computational description of time-dependent transport of a water-based nanofluid with hybrid nanocomposite Cu–Al2O3 over a parabolic surface by Keller-box scheme: A modified Buongiorno model","authors":"Sohita Rajput, K. Bhattacharyya, Dimpal Sharma, Amit Kumar Pandey, Ali J. Chamkha","doi":"10.1142/s0217979224504009","DOIUrl":null,"url":null,"abstract":"This paper discusses the high heat transfer demand from application prospects. Hybrid nanofluid is a well-known liquid with higher heat transfer capabilities. Here, the time-dependent flow of hybrid nanocomposite, by hybridizing the metal (Cu) and metallic oxide (Al2O3) and inserting them into water-based nanofluid, is examined. The flow takes place over the upper half of a parabolic surface. The modified Buongiorno model is used to express the physical phenomenon in mathematical equations form. The governing system of partial differential equations (PDEs) is reduced to a system of ordinary differential equations (ODEs) by applying certain transformations. Computation of the final equations has been done by a numerical scheme, known as the Keller-box method. The significance of dimensionless flow causing physical parameters is shown through graphs and tables. The findings reveal that among the hybrid nanofluids with two types of nanoparticles varying from 0% to 5%, a nanofluid having 5% of both nanoparticles is the one with the maximum surface drag force and heat transport rate, which are 41.8% and 22.7% higher to water, respectively. A higher amount of Al2O3 than Cu results in a suitable hybrid combination for application purposes to produce higher cooling rate with less surface drag. Also, the thickness of the surface, unsteadiness, nanoparticles suspension and power index of wall temperature enhance the heat transfer rate. Thin parabolic surfaces experience less drag and have larger boundary layer thicknesses (momentum, thermal and concentration) as compared to thicker parabolic surfaces. Also, the addition of copper slows down the hybrid fluid flow field, but alumina magnifies the mobility of hybrid fluid.","PeriodicalId":509298,"journal":{"name":"International Journal of Modern Physics B","volume":"35 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224504009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses the high heat transfer demand from application prospects. Hybrid nanofluid is a well-known liquid with higher heat transfer capabilities. Here, the time-dependent flow of hybrid nanocomposite, by hybridizing the metal (Cu) and metallic oxide (Al2O3) and inserting them into water-based nanofluid, is examined. The flow takes place over the upper half of a parabolic surface. The modified Buongiorno model is used to express the physical phenomenon in mathematical equations form. The governing system of partial differential equations (PDEs) is reduced to a system of ordinary differential equations (ODEs) by applying certain transformations. Computation of the final equations has been done by a numerical scheme, known as the Keller-box method. The significance of dimensionless flow causing physical parameters is shown through graphs and tables. The findings reveal that among the hybrid nanofluids with two types of nanoparticles varying from 0% to 5%, a nanofluid having 5% of both nanoparticles is the one with the maximum surface drag force and heat transport rate, which are 41.8% and 22.7% higher to water, respectively. A higher amount of Al2O3 than Cu results in a suitable hybrid combination for application purposes to produce higher cooling rate with less surface drag. Also, the thickness of the surface, unsteadiness, nanoparticles suspension and power index of wall temperature enhance the heat transfer rate. Thin parabolic surfaces experience less drag and have larger boundary layer thicknesses (momentum, thermal and concentration) as compared to thicker parabolic surfaces. Also, the addition of copper slows down the hybrid fluid flow field, but alumina magnifies the mobility of hybrid fluid.
采用 Keller-box 方案对抛物面上带有 Cu-Al2O3 混合纳米复合材料的水基纳米流体随时间变化的传输进行计算描述:改进的布昂奥尔诺模型
本文从应用前景出发,探讨了高传热需求。混合纳米流体是一种众所周知的具有较高传热能力的液体。本文研究了将金属(Cu)和金属氧化物(Al2O3)杂化并插入水基纳米流体的混合纳米复合材料的随时间变化的流动。流动发生在抛物面的上半部分。使用改进的 Buongiorno 模型以数学方程形式表达物理现象。通过应用某些变换,偏微分方程(PDEs)支配系统被简化为常微分方程(ODEs)系统。最终方程的计算是通过一种称为 Keller-box 方法的数值方案完成的。无量纲流动导致物理参数的重要性通过图表显示出来。研究结果表明,在两种纳米粒子含量从 0% 到 5% 不等的混合纳米流体中,两种纳米粒子含量均为 5% 的纳米流体的表面阻力和热传输率最大,分别比水高 41.8% 和 22.7%。Al2O3 的用量高于 Cu 的用量会产生一个合适的混合组合,以产生更高的冷却率和更小的表面阻力。此外,表面厚度、不稳定性、纳米颗粒悬浮和壁温功率指数也会提高传热速率。与较厚的抛物面相比,薄抛物面的阻力较小,边界层厚度(动量、热量和浓度)较大。此外,铜的加入会减慢混合流体流场的速度,但氧化铝会放大混合流体的流动性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信