{"title":"An improved deep learning approach for speech enhancement","authors":"Malek Miled, M. B. Ben Messaoud","doi":"10.24840/2183-6493_009-005_001531","DOIUrl":null,"url":null,"abstract":"Single-channel speech enhancement refers to the task of improving the quality and intelligibility of a speech signal in a noisy environment. Time-domain and time-frequency-domain methods are two main categories of approaches for speech enhancement. In this paper, we propose a approach based on a cross-domain framework. This framework utilizes our knowledge of the spectrogram and overcomes some of the limitations faced by time-frequency domain methods. First, we apply the intrinsic mode functions of the empirical mode decomposition and an improved version of principal component analysis. Then, we design a cross-domain learning framework to determine the correlations along the frequency and time axes. At low SNR = -5 dB, the effectiveness of our proposed approach is demonstrated by its performance based on objective and subjective measures. With average scores of -0.49, 2.47, 2.44, and 0.68 for SegSNR, PESQ, Cov, and STOI, respectively. The results highlight the success of our approach in addressing low SNR conditions.","PeriodicalId":36339,"journal":{"name":"U.Porto Journal of Engineering","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"U.Porto Journal of Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24840/2183-6493_009-005_001531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Single-channel speech enhancement refers to the task of improving the quality and intelligibility of a speech signal in a noisy environment. Time-domain and time-frequency-domain methods are two main categories of approaches for speech enhancement. In this paper, we propose a approach based on a cross-domain framework. This framework utilizes our knowledge of the spectrogram and overcomes some of the limitations faced by time-frequency domain methods. First, we apply the intrinsic mode functions of the empirical mode decomposition and an improved version of principal component analysis. Then, we design a cross-domain learning framework to determine the correlations along the frequency and time axes. At low SNR = -5 dB, the effectiveness of our proposed approach is demonstrated by its performance based on objective and subjective measures. With average scores of -0.49, 2.47, 2.44, and 0.68 for SegSNR, PESQ, Cov, and STOI, respectively. The results highlight the success of our approach in addressing low SNR conditions.