Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting

IF 3.3 Q3 NANOSCIENCE & NANOTECHNOLOGY
A. Rana
{"title":"Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting","authors":"A. Rana","doi":"10.37819/nanofab.8.1757","DOIUrl":null,"url":null,"abstract":"The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"3 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37819/nanofab.8.1757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.
基于纳米纤维素的水凝胶:制备策略、染料吸附和影响因素
未经任何事先处理就对染料进行不当处置,是造成全球水污染的主要原因之一。由于被染料污染的水中含有多种有害元素,可能会危害水生生态系统,影响水生生物,并最终进入食物链。回收被染料污染的废水最有效的方法是吸附、电解、高级氧化等。在这些技术中,吸附策略因其优越的物理化学特性,已被优先用于处理污染水。在这篇综述文章中,对纯硝化纤维素(NC)水凝胶、基于金属/金属氧化物或光吸附剂、金属有机框架支撑、表面功能化、生物材料填充的 NC 水凝胶吸附染料的潜力进行了深入探讨。系统地评估了 pH 值、时间、温度和填料/添加剂等不同因素对 NC 基吸附剂的染料吸附/降解能力的影响,以及染料吸附的动力学和等温线数据。此外,还全面评估了不同洗脱剂对各种 NC 水凝胶回收能力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanofabrication
Nanofabrication NANOSCIENCE & NANOTECHNOLOGY-
自引率
10.30%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信