{"title":"Nanocellulose-based Hydrogels: Preparation Strategies, Dye Adsorption and Factors Impacting","authors":"A. Rana","doi":"10.37819/nanofab.8.1757","DOIUrl":null,"url":null,"abstract":"The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.","PeriodicalId":51992,"journal":{"name":"Nanofabrication","volume":"3 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanofabrication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37819/nanofab.8.1757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The improper disposal of dyes without any prior treatment is one of the main causes of water pollution around the globe. Since dye-contaminated water contains a variety of hazardous elements, which may harm the aquatic ecosystem, impact the aquatic organisms and ultimately enter the food web chain. The most effective ways to recycle dye-contaminated waste water are adsorption, electrolysis, advanced oxidation, etc. Out of these techniques, adsorption strategy, due to its superior physico-chemical features, has been preferably employed for treating polluted water. In this review article, the potential of pure nitrocellulose (NC) hydrogel, metal/metal oxide or photo-adsorbents-based, metal-organic-framework supported, surface functionalized, bio-materials filled NC-based hydrogels for dyes adsorption has been thoroughly reviewed. The impact of different factors such as pH, time, temperature and filler/additives on dye adsorption/degradation capability of NC-based adsorbents, and kinetic and isotherm data of dye adsorption has been assessed systematically. Further, the influence of different eluents on the recycling ability of various NC- based hydrogels has also been fully assessed.