Ehsan Ezzatpour Ghadim, Marc Walker, Richard I. Walton
{"title":"The Use of Rapid Precipitation to Synthesise Multivariate UiO-66 Metal–Organic Frameworks for Photocatalysis","authors":"Ehsan Ezzatpour Ghadim, Marc Walker, Richard I. Walton","doi":"10.3390/inorganics11120455","DOIUrl":null,"url":null,"abstract":"A rapid synthesis method is used to form multivariate metal–organic frameworks (MTV-MOFs) with the UiO-66 structure, where precipitation occurs upon mixing solutions of ligands and metal salts at temperatures less than 60 °C. The materials include mixtures of metals and ligands, Ce/Zr-UiO-66(1,4-NDC/BDC), Ce/Zr-UiO-66(1,4-NDC/2,6-NDC), Ce/Zr-UiO-66(1,4-NDC), Ce/Ti-UiO-66(1,4-NDC), and Ce/Ti-UiO-66(BDC-NH2) (NDC = naphthalene dicarboxylate, BDC = benzene-1,4-dicarboxylate, BDC-NH2 = 2-amino-benzene-1,4-dicarboxylate). Phase purity was determined by powder X-ray diffraction (PXRD), with a broadening of the profile indicative of nanoscale crystallites, verified by scanning electron microscopy (SEM). The molar ratio of metals and organic ligands in Ce/Zr-UiO-66(1,4-NDC/2,6-NDC) was confirmed by X-ray fluorescence (XRF) and solution 1H nuclear magnetic resonance (NMR) after digestion, respectively. Analysis of the adsorption of dyes by the MTV-MOFs showed that a pseudo-first-order model accounts for the kinetics. The effectiveness of photocatalytic degradation of two cationic (methylene blue and rhodamine B) and two anionic (Congo red and Alizarin Red S (AR)) dyes was studied under UV and visible light. The most effective photocatalytic degradation was found between 1 and 15 min towards both cationic and anionic dyes by Ce/Zr-UiO-66(1,4-NDC/2,6-NDC). Measurements of recyclability and photostability showed retention of crystallinity after five cycles of use and exposure to light for 17 h, as confirmed by PXRD.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":"148 4","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11120455","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
A rapid synthesis method is used to form multivariate metal–organic frameworks (MTV-MOFs) with the UiO-66 structure, where precipitation occurs upon mixing solutions of ligands and metal salts at temperatures less than 60 °C. The materials include mixtures of metals and ligands, Ce/Zr-UiO-66(1,4-NDC/BDC), Ce/Zr-UiO-66(1,4-NDC/2,6-NDC), Ce/Zr-UiO-66(1,4-NDC), Ce/Ti-UiO-66(1,4-NDC), and Ce/Ti-UiO-66(BDC-NH2) (NDC = naphthalene dicarboxylate, BDC = benzene-1,4-dicarboxylate, BDC-NH2 = 2-amino-benzene-1,4-dicarboxylate). Phase purity was determined by powder X-ray diffraction (PXRD), with a broadening of the profile indicative of nanoscale crystallites, verified by scanning electron microscopy (SEM). The molar ratio of metals and organic ligands in Ce/Zr-UiO-66(1,4-NDC/2,6-NDC) was confirmed by X-ray fluorescence (XRF) and solution 1H nuclear magnetic resonance (NMR) after digestion, respectively. Analysis of the adsorption of dyes by the MTV-MOFs showed that a pseudo-first-order model accounts for the kinetics. The effectiveness of photocatalytic degradation of two cationic (methylene blue and rhodamine B) and two anionic (Congo red and Alizarin Red S (AR)) dyes was studied under UV and visible light. The most effective photocatalytic degradation was found between 1 and 15 min towards both cationic and anionic dyes by Ce/Zr-UiO-66(1,4-NDC/2,6-NDC). Measurements of recyclability and photostability showed retention of crystallinity after five cycles of use and exposure to light for 17 h, as confirmed by PXRD.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD