{"title":"Dynamics of metrics in measure spaces and scaling entropy","authors":"A. Vershik, Georgii A Veprev, P. Zatitskii","doi":"10.4213/rm10103e","DOIUrl":null,"url":null,"abstract":"This survey is dedicated to a new direction in the theory of dynamical systems, the dynamics of metrics in measure spaces and new (catalytic) invariants of transformations with invariant measure. A space equipped with a measure and a metric which are naturally consistent with each other (a metric triple, or an mm-space) defines automatically the notion of its entropy class, thus allowing one to construct a theory of scaling entropy for dynamical systems with invariant measure, which is different and more general in comparison to the Shannon-Kolmogorov theory. This possibility was hinted at by Shannon himself, but the hint went unnoticed. The classification of metric triples in terms of matrix distributions presented in this paper was proposed by Gromov and Vershik. We describe some corollaries obtained by applying this theory. Bibliography: 88 titles.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4213/rm10103e","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This survey is dedicated to a new direction in the theory of dynamical systems, the dynamics of metrics in measure spaces and new (catalytic) invariants of transformations with invariant measure. A space equipped with a measure and a metric which are naturally consistent with each other (a metric triple, or an mm-space) defines automatically the notion of its entropy class, thus allowing one to construct a theory of scaling entropy for dynamical systems with invariant measure, which is different and more general in comparison to the Shannon-Kolmogorov theory. This possibility was hinted at by Shannon himself, but the hint went unnoticed. The classification of metric triples in terms of matrix distributions presented in this paper was proposed by Gromov and Vershik. We describe some corollaries obtained by applying this theory. Bibliography: 88 titles.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.