Emma L. Fisher, Natasha A. Weaver, Alexandra L. Marlow, Bruce R. King, C. Smart
{"title":"Macronutrient Intake in Children and Adolescents with Type 1 Diabetes and Its Association with Glycemic Outcomes","authors":"Emma L. Fisher, Natasha A. Weaver, Alexandra L. Marlow, Bruce R. King, C. Smart","doi":"10.1155/2023/7102890","DOIUrl":null,"url":null,"abstract":"Aims. This study aimed to identify the quantity and range of protein, fat, and carbohydrate consumed in meals and snacks in children with Type 1 diabetes (T1D), and to explore associations between the variability in fat and protein intakes with the glycemic outcomes. Methods. This was a cross-sectional dietary study of children 6–18 years attending pediatric diabetes service in Australia. Three-day weighed food records were analyzed for the macronutrient intake. Impacts of dietary intake on glycemic outcomes were explored. Results. Forty-eight children (63% male) aged 11.7 ± 2.9 (mean ± SD) with HbA1c 6.7 ± 1.1% (mmol/mol), BMI Z-score 0.51 ± 0.83, and daily insulin dose 0.99 units/kg completed 3-day weighed food records. Mean intakes at breakfast were 47-g carbohydrate, 15-g protein, and 12-g fat. Lunch: 49-g carbohydrate, 19-g protein, and 19-g fat. Dinner: 57-g carbohydrate, 33-g protein, and 26-g fat. Fifty-five percent (n = 80) of the dinner meals met criteria for a high-fat, high-protein (HFHP) meal. In a subset (n = 16) of participants, exploratory analysis indicated a trend of reduced %TIR (58%) in the 8 hr following HFHP dinner, compared to %TIR (74%) following non-HFHP dinner ( p = 0.05 ). Seventy-eight percent of the participants aged 12–18 years intake at dinner varied by more than 20-g fat or more than 25-g protein. There was no association between the variability in fat and protein intake at dinner with HbA1c. Saturated fat contributed to 14.7% (±3.0) of participants energy intake. Conclusions. Children with T1D frequently consume quantities of fat and protein at dinner that have been shown to cause delayed postprandial hyperglycemia. HFHP dinners were associated with the reduced %TIR over 8 hr, presenting an opportunity for insulin-dose adjustments. Future research that explores the meal dietary variability with postprandial glycemia in this population is needed. Excessive intake of the saturated fat highlights the need for dietary interventions to reduce CVD risk. This trial is registered with ACTRN12622000002785.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/7102890","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Aims. This study aimed to identify the quantity and range of protein, fat, and carbohydrate consumed in meals and snacks in children with Type 1 diabetes (T1D), and to explore associations between the variability in fat and protein intakes with the glycemic outcomes. Methods. This was a cross-sectional dietary study of children 6–18 years attending pediatric diabetes service in Australia. Three-day weighed food records were analyzed for the macronutrient intake. Impacts of dietary intake on glycemic outcomes were explored. Results. Forty-eight children (63% male) aged 11.7 ± 2.9 (mean ± SD) with HbA1c 6.7 ± 1.1% (mmol/mol), BMI Z-score 0.51 ± 0.83, and daily insulin dose 0.99 units/kg completed 3-day weighed food records. Mean intakes at breakfast were 47-g carbohydrate, 15-g protein, and 12-g fat. Lunch: 49-g carbohydrate, 19-g protein, and 19-g fat. Dinner: 57-g carbohydrate, 33-g protein, and 26-g fat. Fifty-five percent (n = 80) of the dinner meals met criteria for a high-fat, high-protein (HFHP) meal. In a subset (n = 16) of participants, exploratory analysis indicated a trend of reduced %TIR (58%) in the 8 hr following HFHP dinner, compared to %TIR (74%) following non-HFHP dinner ( p = 0.05 ). Seventy-eight percent of the participants aged 12–18 years intake at dinner varied by more than 20-g fat or more than 25-g protein. There was no association between the variability in fat and protein intake at dinner with HbA1c. Saturated fat contributed to 14.7% (±3.0) of participants energy intake. Conclusions. Children with T1D frequently consume quantities of fat and protein at dinner that have been shown to cause delayed postprandial hyperglycemia. HFHP dinners were associated with the reduced %TIR over 8 hr, presenting an opportunity for insulin-dose adjustments. Future research that explores the meal dietary variability with postprandial glycemia in this population is needed. Excessive intake of the saturated fat highlights the need for dietary interventions to reduce CVD risk. This trial is registered with ACTRN12622000002785.