Yuhang Zhu, Jing Guo, Haitao Li, Shuxin Liu, Yingle Li
{"title":"TSAGNN: Temporal link predict method based on two stream adaptive graph neural network","authors":"Yuhang Zhu, Jing Guo, Haitao Li, Shuxin Liu, Yingle Li","doi":"10.3233/ida-237367","DOIUrl":null,"url":null,"abstract":"Temporal link prediction based on graph neural networks has become a hot spot in the field of complex networks. To solve the problems of the existing temporal link prediction methods based on graph neural networks do not consider the future time-domain features and spatial-domain features are limited used, this paper proposes a novel temporal link prediction method based on two streams adaptive graph neural networks. Firstly, the network topology features are extracted from the micro, meso, and middle perspectives. Combined with the adaptive mechanism of convolution and self-attention, the preprocessing of the feature extraction is more effective; Secondly, an extended bi-directional long short-term memory network is proposed, which uses graph convolution to process topological features, and recursively learns the state vectors of the target snapshot by using the future time-domain information and the past historical information; Thirdly, the location coding is replaced by the time-coding for the transformer mechanism, so that past information and future information can be learned from each other, and the time-domain information of the network can be further mined; Finally, a novel two-stream network framework is proposed, which combines the processing results of point features and edge features. The experimental results on 9 data sets show that the proposed method has a better prediction effect and better robustness than the classical graph neural network methods.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-237367","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal link prediction based on graph neural networks has become a hot spot in the field of complex networks. To solve the problems of the existing temporal link prediction methods based on graph neural networks do not consider the future time-domain features and spatial-domain features are limited used, this paper proposes a novel temporal link prediction method based on two streams adaptive graph neural networks. Firstly, the network topology features are extracted from the micro, meso, and middle perspectives. Combined with the adaptive mechanism of convolution and self-attention, the preprocessing of the feature extraction is more effective; Secondly, an extended bi-directional long short-term memory network is proposed, which uses graph convolution to process topological features, and recursively learns the state vectors of the target snapshot by using the future time-domain information and the past historical information; Thirdly, the location coding is replaced by the time-coding for the transformer mechanism, so that past information and future information can be learned from each other, and the time-domain information of the network can be further mined; Finally, a novel two-stream network framework is proposed, which combines the processing results of point features and edge features. The experimental results on 9 data sets show that the proposed method has a better prediction effect and better robustness than the classical graph neural network methods.
期刊介绍:
Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.