Research on Climbing Robot for Transmission Tower Based on Foot-End Force Balancing Algorithm

IF 2.2 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Actuators Pub Date : 2023-11-26 DOI:10.3390/act12120441
Zhuo Liu, Jiawei Lu, Haibo Du, Yansheng Liu, Wenwu Zhu, Junyi You
{"title":"Research on Climbing Robot for Transmission Tower Based on Foot-End Force Balancing Algorithm","authors":"Zhuo Liu, Jiawei Lu, Haibo Du, Yansheng Liu, Wenwu Zhu, Junyi You","doi":"10.3390/act12120441","DOIUrl":null,"url":null,"abstract":"This paper aims to introduce robot technology to carry out the safety inspection of transmission towers in long-distance power transmission, so as to improve the safety and efficiency of inspection. However, aiming at the problem that the existing climbing robots are mainly used for large load applications, which leads to the large size and lack of flexibility of the robot, we propose an innovative solution. Firstly, a lightweight quadruped climbing robot is designed to improve portability and operational flexibility. Then, a one-dimensional force sensor is added at the end of each leg of the robot, and a special swing phase trajectory is designed. The robot can judge whether the electromagnetic adsorption is effective and avoid potential safety hazards. Finally, based on the principle of virtual model control (VMC), a foot-end force balancing algorithm is proposed to achieve uniform distribution and continuous change in force, and improve safety and load capacity. The experiments show that the scheme has a stable climbing ability in the environments of angle steel, vertical ferromagnetic plane and transmission tower.","PeriodicalId":48584,"journal":{"name":"Actuators","volume":"2 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Actuators","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/act12120441","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper aims to introduce robot technology to carry out the safety inspection of transmission towers in long-distance power transmission, so as to improve the safety and efficiency of inspection. However, aiming at the problem that the existing climbing robots are mainly used for large load applications, which leads to the large size and lack of flexibility of the robot, we propose an innovative solution. Firstly, a lightweight quadruped climbing robot is designed to improve portability and operational flexibility. Then, a one-dimensional force sensor is added at the end of each leg of the robot, and a special swing phase trajectory is designed. The robot can judge whether the electromagnetic adsorption is effective and avoid potential safety hazards. Finally, based on the principle of virtual model control (VMC), a foot-end force balancing algorithm is proposed to achieve uniform distribution and continuous change in force, and improve safety and load capacity. The experiments show that the scheme has a stable climbing ability in the environments of angle steel, vertical ferromagnetic plane and transmission tower.
基于脚端力平衡算法的输电塔攀爬机器人研究
本文旨在引入机器人技术,对远距离输电中的输电塔进行安全检测,以提高检测的安全性和效率。然而,针对现有攀爬机器人主要用于大负载应用,导致机器人体积庞大、缺乏灵活性的问题,我们提出了创新性的解决方案。首先,我们设计了一种轻型四足攀爬机器人,以提高其便携性和操作灵活性。然后,在机器人每条腿的末端增加了一个一维力传感器,并设计了特殊的摆动阶段轨迹。机器人可以判断电磁吸附是否有效,避免潜在的安全隐患。最后,基于虚拟模型控制(VMC)原理,提出一种脚端力平衡算法,实现力的均匀分布和连续变化,提高安全性和负载能力。实验表明,该方案在角钢、垂直铁磁平面和输电塔等环境下具有稳定的爬坡能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Actuators
Actuators Mathematics-Control and Optimization
CiteScore
3.90
自引率
15.40%
发文量
315
审稿时长
11 weeks
期刊介绍: Actuators (ISSN 2076-0825; CODEN: ACTUC3) is an international open access journal on the science and technology of actuators and control systems published quarterly online by MDPI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信