Imputation Missing Value to Overcome Sparsity Problems in The Recommendation System

Sri Lestari, M. E. Afdila, Y. A. Pratama
{"title":"Imputation Missing Value to Overcome Sparsity Problems in The Recommendation System","authors":"Sri Lestari, M. E. Afdila, Y. A. Pratama","doi":"10.29207/resti.v7i6.5300","DOIUrl":null,"url":null,"abstract":"A recommendation system is a system that provides suggestions or recommendations for a product or service for its users. One of the problems encountered in the recommendation system is sparsity, namely the lack of available data for analysis, resulting in poor performance of the recommendation system because it cannot provide the proper recommendations. On this basis, this study proposes the mean method and the stochastic Hot-Deck Method to calculate missing values to improve the quality of the recommendations. The experimental results show that the hot-deck imputation method gives better results than the mean imputation method with smaller RMSE and MAE values, namely 2,706 and 2,691.","PeriodicalId":435683,"journal":{"name":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29207/resti.v7i6.5300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recommendation system is a system that provides suggestions or recommendations for a product or service for its users. One of the problems encountered in the recommendation system is sparsity, namely the lack of available data for analysis, resulting in poor performance of the recommendation system because it cannot provide the proper recommendations. On this basis, this study proposes the mean method and the stochastic Hot-Deck Method to calculate missing values to improve the quality of the recommendations. The experimental results show that the hot-deck imputation method gives better results than the mean imputation method with smaller RMSE and MAE values, namely 2,706 and 2,691.
计算缺失值以克服推荐系统中的稀疏性问题
推荐系统是一种为用户提供产品或服务建议或推荐的系统。推荐系统遇到的问题之一是稀疏性,即缺乏可供分析的数据,导致推荐系统无法提供合适的推荐,从而表现不佳。在此基础上,本研究提出了计算缺失值的均值法和随机 Hot-Deck 法,以提高推荐的质量。实验结果表明,热甲板估算法比均值估算法效果更好,RMSE 值和 MAE 值更小,分别为 2 706 和 2 691。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信