{"title":"Enhancing legal judgment summarization with integrated semantic and structural information","authors":"Jingpei Dan, Weixuan Hu, Yuming Wang","doi":"10.1007/s10506-023-09381-8","DOIUrl":null,"url":null,"abstract":"<div><p>Legal Judgment Summarization (LJS) can highly summarize legal judgment documents, improving judicial work efficiency in case retrieval and other occasions. Legal judgment documents are usually lengthy; however, most existing LJS methods are directly based on general text summarization models, which cannot handle long texts effectively. Additionally, due to the complex structural characteristics of legal judgment documents, some information may be lost by applying only one single kind of summarization model. To address these issues, we propose an integrated summarization method which leverages both semantic and structural information to improve the quality of LJS. Specifically, legal judgment documents are firstly segmented into three relatively short parts according to their specific structure. We propose an extractive summarization model named BSLT and an abstractive summarization model named LPGN by adopting Lawformer as the encoder. Lawformer is a new pre-trained language model for long legal documents, which specializes in capturing long-distance dependency and modeling legal semantic features. Then, we adopt different models to summarize the corresponding part regarding its structural characteristics. Finally, the obtained summaries are integrated to generate a high-quality summary involving semantic and structural information. We conduct comparative experiments to evaluate the performance of our model. The results show that our model outperforms the baseline model LEAD-3 by 14.78% on the mean ROUGE score, which demonstrates our method is effective in LJS and is prospected to be applied to assist other tasks in legal artificial intelligence.</p></div>","PeriodicalId":51336,"journal":{"name":"Artificial Intelligence and Law","volume":"33 2","pages":"271 - 292"},"PeriodicalIF":3.1000,"publicationDate":"2023-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence and Law","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10506-023-09381-8","RegionNum":2,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Legal Judgment Summarization (LJS) can highly summarize legal judgment documents, improving judicial work efficiency in case retrieval and other occasions. Legal judgment documents are usually lengthy; however, most existing LJS methods are directly based on general text summarization models, which cannot handle long texts effectively. Additionally, due to the complex structural characteristics of legal judgment documents, some information may be lost by applying only one single kind of summarization model. To address these issues, we propose an integrated summarization method which leverages both semantic and structural information to improve the quality of LJS. Specifically, legal judgment documents are firstly segmented into three relatively short parts according to their specific structure. We propose an extractive summarization model named BSLT and an abstractive summarization model named LPGN by adopting Lawformer as the encoder. Lawformer is a new pre-trained language model for long legal documents, which specializes in capturing long-distance dependency and modeling legal semantic features. Then, we adopt different models to summarize the corresponding part regarding its structural characteristics. Finally, the obtained summaries are integrated to generate a high-quality summary involving semantic and structural information. We conduct comparative experiments to evaluate the performance of our model. The results show that our model outperforms the baseline model LEAD-3 by 14.78% on the mean ROUGE score, which demonstrates our method is effective in LJS and is prospected to be applied to assist other tasks in legal artificial intelligence.
期刊介绍:
Artificial Intelligence and Law is an international forum for the dissemination of original interdisciplinary research in the following areas: Theoretical or empirical studies in artificial intelligence (AI), cognitive psychology, jurisprudence, linguistics, or philosophy which address the development of formal or computational models of legal knowledge, reasoning, and decision making. In-depth studies of innovative artificial intelligence systems that are being used in the legal domain. Studies which address the legal, ethical and social implications of the field of Artificial Intelligence and Law.
Topics of interest include, but are not limited to, the following: Computational models of legal reasoning and decision making; judgmental reasoning, adversarial reasoning, case-based reasoning, deontic reasoning, and normative reasoning. Formal representation of legal knowledge: deontic notions, normative
modalities, rights, factors, values, rules. Jurisprudential theories of legal reasoning. Specialized logics for law. Psychological and linguistic studies concerning legal reasoning. Legal expert systems; statutory systems, legal practice systems, predictive systems, and normative systems. AI and law support for legislative drafting, judicial decision-making, and
public administration. Intelligent processing of legal documents; conceptual retrieval of cases and statutes, automatic text understanding, intelligent document assembly systems, hypertext, and semantic markup of legal documents. Intelligent processing of legal information on the World Wide Web, legal ontologies, automated intelligent legal agents, electronic legal institutions, computational models of legal texts. Ramifications for AI and Law in e-Commerce, automatic contracting and negotiation, digital rights management, and automated dispute resolution. Ramifications for AI and Law in e-governance, e-government, e-Democracy, and knowledge-based systems supporting public services, public dialogue and mediation. Intelligent computer-assisted instructional systems in law or ethics. Evaluation and auditing techniques for legal AI systems. Systemic problems in the construction and delivery of legal AI systems. Impact of AI on the law and legal institutions. Ethical issues concerning legal AI systems. In addition to original research contributions, the Journal will include a Book Review section, a series of Technology Reports describing existing and emerging products, applications and technologies, and a Research Notes section of occasional essays posing interesting and timely research challenges for the field of Artificial Intelligence and Law. Financial support for the Journal of Artificial Intelligence and Law is provided by the University of Pittsburgh School of Law.