Yuda Chen, Changhe Zhou, Yihan Wang, Xing Li, Wei Jia, Jin Wang
{"title":"Polarization-independent double-layer transmission two-dimensional slanted grating under normal incidence","authors":"Yuda Chen, Changhe Zhou, Yihan Wang, Xing Li, Wei Jia, Jin Wang","doi":"10.1117/12.2687062","DOIUrl":null,"url":null,"abstract":"This paper proposed a transmission two-dimensional (2D) slanted grating based on a double-layer cylindrical structure. We used rigorous coupled-wave analysis (RCWA) and simulated annealing algorithm (SA) to optimize the grating parameters. Results show that the diffraction efficiency of the (-1,0) and (0,-1) order exceed 35% under normal incidence in the range of 429–468 nm wavelength for TE and TM polarization. Meanwhile, the total diffraction efficiency can reach up to 78%. We also discuss the tolerances for the grating parameters to ensure high quality manufacturing processes. The relatively large tolerances ensure fabrication of the two-dimensional slanted grating and provides the possibility for practical applications. The proposed 2D slanted grating can be applied to 2D exit pupil expansion, which is of great importance in AR/VR applications.","PeriodicalId":149506,"journal":{"name":"SPIE/COS Photonics Asia","volume":"4 1","pages":"127681S - 127681S-7"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE/COS Photonics Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2687062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper proposed a transmission two-dimensional (2D) slanted grating based on a double-layer cylindrical structure. We used rigorous coupled-wave analysis (RCWA) and simulated annealing algorithm (SA) to optimize the grating parameters. Results show that the diffraction efficiency of the (-1,0) and (0,-1) order exceed 35% under normal incidence in the range of 429–468 nm wavelength for TE and TM polarization. Meanwhile, the total diffraction efficiency can reach up to 78%. We also discuss the tolerances for the grating parameters to ensure high quality manufacturing processes. The relatively large tolerances ensure fabrication of the two-dimensional slanted grating and provides the possibility for practical applications. The proposed 2D slanted grating can be applied to 2D exit pupil expansion, which is of great importance in AR/VR applications.