n-Rooks and n-queens problem on planar and modular chessboards with hexagonal cells

IF 0.4 Q4 MATHEMATICS
Eduard C. Taganap, Rainier D. Almuete
{"title":"n-Rooks and n-queens problem on planar and modular chessboards with hexagonal cells","authors":"Eduard C. Taganap, Rainier D. Almuete","doi":"10.7546/nntdm.2023.29.4.774-788","DOIUrl":null,"url":null,"abstract":"We show the existence of solutions to the n-rooks problem and n-queens problem on chessboards with hexagonal cells, problems equivalent to certain three and six direction riders on ordinary chessboards. Translating the problems into graph theory problems, we determine the independence number (maximum size of independent set) of rooks graph and queens graph. We consider the $n \\times n$ planar diamond-shaped H_n with hexagonal cells, and the board $H_n$ as a flat torus $T_n$. Here, a rook can execute moves on lines perpendicular to the six sides of the cell it is placed, and a queen can execute moves on those lines together with lines through the six corners of the cell it is placed.","PeriodicalId":44060,"journal":{"name":"Notes on Number Theory and Discrete Mathematics","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Notes on Number Theory and Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7546/nntdm.2023.29.4.774-788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show the existence of solutions to the n-rooks problem and n-queens problem on chessboards with hexagonal cells, problems equivalent to certain three and six direction riders on ordinary chessboards. Translating the problems into graph theory problems, we determine the independence number (maximum size of independent set) of rooks graph and queens graph. We consider the $n \times n$ planar diamond-shaped H_n with hexagonal cells, and the board $H_n$ as a flat torus $T_n$. Here, a rook can execute moves on lines perpendicular to the six sides of the cell it is placed, and a queen can execute moves on those lines together with lines through the six corners of the cell it is placed.
带六边形单元的平面和模块棋盘上的 n 车和 n 王问题
我们证明了在有六边形单元的棋盘上 n 车问题和 n 皇后问题的解的存在性,这些问题相当于普通棋盘上某些三向和六向车的问题。将这些问题转化为图论问题,我们确定了车图和后图的独立数(独立集的最大大小)。我们考虑具有六边形单元的 $n \times n$ 平面菱形 H_n,并将棋盘 $H_n$ 视为平面环形 $T_n$。在这里,车可以在垂直于它所放置的单元的六条边的直线上执行棋步,而后可以在这些直线和通过它所放置的单元的六个角的直线上执行棋步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
33.30%
发文量
71
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信