Pathik Sahoo, Pushpendra Singh, Komal Saxena, Subrata Ghosh, Ravindra P. Singh, R. Benosman, Jonathan P. Hill, Tomonobu Nakayama, A. Bandyopadhyay
{"title":"A general-purpose organic gel computer that learns by itself","authors":"Pathik Sahoo, Pushpendra Singh, Komal Saxena, Subrata Ghosh, Ravindra P. Singh, R. Benosman, Jonathan P. Hill, Tomonobu Nakayama, A. Bandyopadhyay","doi":"10.1088/2634-4386/ad0fec","DOIUrl":null,"url":null,"abstract":"To build energy minimized superstructures, self-assembling molecules explore astronomical options, colliding ∼109 molecules s−1. Thus far, no computer has used it fully to optimize choices and execute advanced computational theories only by synthesizing supramolecules. To realize it, first, we remotely re-wrote the problem in a language that supramolecular synthesis comprehends. Then, all-chemical neural network synthesizes one helical nanowire for one periodic event. These nanowires self-assemble into gel fibers mapping intricate relations between periodic events in any-data-type, the output is read instantly from optical hologram. Problem-wise, self-assembling layers or neural network depth is optimized to chemically simulate theories discovering invariants for learning. Subsequently, synthesis alone solves classification, feature learning problems instantly with single shot training. Reusable gel begins general-purpose computing that would chemically invent suitable models for problem-specific unsupervised learning. Irrespective of complexity, keeping fixed computing time and power, gel promises a toxic-hardware-free world. One sentence summary: fractally coupled deep learning networks revisits Rosenblatt’s 1950s theorem on deep learning network.","PeriodicalId":198030,"journal":{"name":"Neuromorphic Computing and Engineering","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuromorphic Computing and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2634-4386/ad0fec","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
To build energy minimized superstructures, self-assembling molecules explore astronomical options, colliding ∼109 molecules s−1. Thus far, no computer has used it fully to optimize choices and execute advanced computational theories only by synthesizing supramolecules. To realize it, first, we remotely re-wrote the problem in a language that supramolecular synthesis comprehends. Then, all-chemical neural network synthesizes one helical nanowire for one periodic event. These nanowires self-assemble into gel fibers mapping intricate relations between periodic events in any-data-type, the output is read instantly from optical hologram. Problem-wise, self-assembling layers or neural network depth is optimized to chemically simulate theories discovering invariants for learning. Subsequently, synthesis alone solves classification, feature learning problems instantly with single shot training. Reusable gel begins general-purpose computing that would chemically invent suitable models for problem-specific unsupervised learning. Irrespective of complexity, keeping fixed computing time and power, gel promises a toxic-hardware-free world. One sentence summary: fractally coupled deep learning networks revisits Rosenblatt’s 1950s theorem on deep learning network.