Some New Properties of Cyclotomic Cliques Arrangements

Philippe Ryckelynck, Laurent Smoch
{"title":"Some New Properties of Cyclotomic Cliques Arrangements","authors":"Philippe Ryckelynck, Laurent Smoch","doi":"10.30958/ajs.10-4-2","DOIUrl":null,"url":null,"abstract":"In this paper, we study the arrangement of lines in the euclidean plane constructed from the geometric clique graph generated by the regular -gon. The vertices of this clique arrangement are located on finite concentric circles that we call orbits. We focus especially on the number of orbits and the number of vertices inside and outside the regular -gon. Combinatorics in finite sets of quadruplets of integers provide information on the way the orbits are distributed. Next, using cyclotomic fields, we give galoisian properties of the radii of the orbits and their cardinalities. Keywords: arrangement of lines in the plane, cyclotomic fields, geometric graphs, Galois theory","PeriodicalId":91843,"journal":{"name":"Athens journal of sciences","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Athens journal of sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30958/ajs.10-4-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the arrangement of lines in the euclidean plane constructed from the geometric clique graph generated by the regular -gon. The vertices of this clique arrangement are located on finite concentric circles that we call orbits. We focus especially on the number of orbits and the number of vertices inside and outside the regular -gon. Combinatorics in finite sets of quadruplets of integers provide information on the way the orbits are distributed. Next, using cyclotomic fields, we give galoisian properties of the radii of the orbits and their cardinalities. Keywords: arrangement of lines in the plane, cyclotomic fields, geometric graphs, Galois theory
循环簇排列的一些新特性
在本文中,我们研究了欧几里得平面中由正则-gon 生成的几何簇图构造的线段排列。这种簇排列的顶点位于有限同心圆上,我们称之为轨道。我们特别关注轨道的数量以及正-边形内外的顶点数量。有限整数四元组的组合学提供了轨道分布方式的信息。接下来,我们利用循环域给出了轨道半径及其心数的伽洛瓦性质。关键词:平面中的线段排列、循环域、几何图形、伽洛瓦理论
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信